{-# LANGUAGE PatternSynonyms #-} {- sv2v - Author: Zachary Snow - - Utilities for expressions and ranges -} module Convert.ExprUtils ( simplify , simplifyStep , rangeSize , rangeSizeHiLo , endianCondExpr , endianCondRange , dimensionsSize ) where import Data.Bits (shiftL, shiftR) import Convert.Traverse import Language.SystemVerilog.AST simplify :: Expr -> Expr simplify = simplifyStep . traverseSinglyNestedExprs simplify . simplifyStep simplifyStep :: Expr -> Expr simplifyStep (UniOp LogNot (Number n)) = case numberToInteger n of Just 0 -> bool True Just _ -> bool False Nothing -> UniOp LogNot $ Number n simplifyStep (UniOp LogNot (BinOp Eq a b)) = BinOp Ne a b simplifyStep (UniOp LogNot (BinOp Ne a b)) = BinOp Eq a b simplifyStep (UniOp UniSub (UniOp UniSub e)) = e simplifyStep (UniOp UniSub (BinOp Sub e1 e2)) = BinOp Sub e2 e1 simplifyStep (Concat [e]) = e simplifyStep (Concat es) = Concat $ filter (/= Concat []) es simplifyStep (Repeat (Dec 0) _) = Concat [] simplifyStep (Repeat (Dec 1) es) = Concat es simplifyStep (Mux (Number n) e1 e2) = case numberToInteger n of Just 0 -> e2 Just _ -> e1 Nothing -> Mux (Number n) e1 e2 simplifyStep (Call (Ident "$clog2") (Args [Dec k] [])) = toDec $ clog2 k where clog2Help :: Integer -> Integer -> Integer clog2Help p n = if p >= n then 0 else 1 + clog2Help (p*2) n clog2 :: Integer -> Integer clog2 n = if n < 2 then 0 else clog2Help 1 n simplifyStep (BinOp op e1 e2) = simplifyBinOp op e1 e2 simplifyStep other = other simplifyBinOp :: BinOp -> Expr -> Expr -> Expr simplifyBinOp Add (Dec 0) e = e simplifyBinOp Add e (Dec 0) = e simplifyBinOp Sub e (Dec 0) = e simplifyBinOp Sub (Dec 0) e = UniOp UniSub e simplifyBinOp Mul (Dec 0) _ = toDec 0 simplifyBinOp Mul (Dec 1) e = e simplifyBinOp Mul _ (Dec 0) = toDec 0 simplifyBinOp Mul e (Dec 1) = e simplifyBinOp Add e1 (UniOp UniSub e2) = BinOp Sub e1 e2 simplifyBinOp Add (UniOp UniSub e1) e2 = BinOp Sub e2 e1 simplifyBinOp Sub e1 (UniOp UniSub e2) = BinOp Add e1 e2 simplifyBinOp Sub (UniOp UniSub e1) e2 = UniOp UniSub $ BinOp Add e1 e2 simplifyBinOp Sub (n1 @ Number{}) (BinOp Sub (n2 @ Number{}) e) = BinOp Add (BinOp Sub n1 n2) e simplifyBinOp Sub (n1 @ Number{}) (BinOp Sub e (n2 @ Number{})) = BinOp Sub (BinOp Add n1 n2) e simplifyBinOp Sub (BinOp Add e (n1 @ Number{})) (n2 @ Number{}) = BinOp Add e (BinOp Sub n1 n2) simplifyBinOp Add (n1 @ Number{}) (BinOp Add (n2 @ Number{}) e) = BinOp Add (BinOp Add n1 n2) e simplifyBinOp Add (n1 @ Number{}) (BinOp Sub e (n2 @ Number{})) = BinOp Add e (BinOp Sub n1 n2) simplifyBinOp Sub (BinOp Sub e (n1 @ Number{})) (n2 @ Number{}) = BinOp Sub e (BinOp Add n1 n2) simplifyBinOp Add (BinOp Sub e (n1 @ Number{})) (n2 @ Number{}) = BinOp Sub e (BinOp Sub n1 n2) simplifyBinOp Add (BinOp Sub (n1 @ Number{}) e) (n2 @ Number{}) = BinOp Sub (BinOp Add n1 n2) e simplifyBinOp Ge (BinOp Sub e (Dec 1)) (Dec 0) = BinOp Ge e (toDec 1) simplifyBinOp ShiftAL (Dec x) (Dec y) = toDec $ shiftL x (fromIntegral y) simplifyBinOp ShiftAR (Dec x) (Dec y) = toDec $ shiftR x (fromIntegral y) simplifyBinOp ShiftL (Dec x) (Dec y) = toDec $ shiftL x (fromIntegral y) simplifyBinOp ShiftR (Dec x) (Dec y) = toDec $ shiftR x (fromIntegral y) simplifyBinOp op e1 e2 = case (e1, e2) of (Dec x, Dec y) -> constantFold orig op x y (SizDec x, Dec y) -> constantFold orig op x y (Dec x, SizDec y) -> constantFold orig op x y (Bas x, Dec y) -> constantFold orig op x y (Dec x, Bas y) -> constantFold orig op x y (Bas x, Bas y) -> constantFold orig op x y (NegDec x, Dec y) -> constantFold orig op (-x) y (Dec x, NegDec y) -> constantFold orig op x (-y) (NegDec x, NegDec y) -> constantFold orig op (-x) (-y) _ -> orig where orig = BinOp op e1 e2 -- attempt to constant fold a binary operation on integers constantFold :: Expr -> BinOp -> Integer -> Integer -> Expr constantFold _ Add x y = toDec (x + y) constantFold _ Sub x y = toDec (x - y) constantFold _ Mul x y = toDec (x * y) constantFold _ Div _ 0 = Number $ Based (-32) True Hex 0 bits where bits = 2 ^ (32 :: Integer) - 1 constantFold _ Div x y = toDec (x `quot` y) constantFold _ Mod x y = toDec (x `rem` y) constantFold _ Pow x y = toDec (x ^ y) constantFold _ Eq x y = bool $ x == y constantFold _ Ne x y = bool $ x /= y constantFold _ Gt x y = bool $ x > y constantFold _ Ge x y = bool $ x >= y constantFold _ Lt x y = bool $ x < y constantFold _ Le x y = bool $ x <= y constantFold fallback _ _ _ = fallback bool :: Bool -> Expr bool True = Number $ Decimal 1 False 1 bool False = Number $ Decimal 1 False 0 toDec :: Integer -> Expr toDec n = if n < 0 then UniOp UniSub $ toDec (-n) else if n >= 4294967296 `div` 2 then let size = fromIntegral $ bits $ n * 2 in Number $ Decimal size True n else RawNum n where bits :: Integer -> Integer bits 0 = 0 bits v = 1 + bits (quot v 2) pattern Dec :: Integer -> Expr pattern Dec n <- Number (Decimal (-32) _ n) pattern SizDec :: Integer -> Expr pattern SizDec n <- Number (Decimal 32 _ n) pattern NegDec :: Integer -> Expr pattern NegDec n <- UniOp UniSub (Dec n) pattern Bas :: Integer -> Expr pattern Bas n <- Number (Based _ _ _ n 0) -- returns the size of a range rangeSize :: Range -> Expr rangeSize (s, e) = endianCondExpr (s, e) a b where a = rangeSizeHiLo (s, e) b = rangeSizeHiLo (e, s) -- returns the size of a range known to be ordered rangeSizeHiLo :: Range -> Expr rangeSizeHiLo (hi, lo) = simplify $ BinOp Add (BinOp Sub hi lo) (RawNum 1) -- chooses one or the other expression based on the endianness of the given -- range; [hi:lo] chooses the first expression endianCondExpr :: Range -> Expr -> Expr -> Expr endianCondExpr r e1 e2 = simplify $ Mux (uncurry (BinOp Ge) r) e1 e2 -- chooses one or the other range based on the endianness of the given range, -- but in such a way that the result is itself also usable as a range even if -- the endianness cannot be resolved during conversion, i.e. if it's dependent -- on a parameter value; [hi:lo] chooses the first range endianCondRange :: Range -> Range -> Range -> Range endianCondRange r r1 r2 = ( endianCondExpr r (fst r1) (fst r2) , endianCondExpr r (snd r1) (snd r2) ) -- returns the total size of a set of dimensions dimensionsSize :: [Range] -> Expr dimensionsSize ranges = simplify $ foldl (BinOp Mul) (RawNum 1) $ map rangeSize $ ranges