sv2v/src/Convert/PackedArray.hs

251 lines
9.8 KiB
Haskell
Raw Normal View History

{- sv2v
- Author: Zachary Snow <zach@zachjs.com>
-
- Conversion for flattening multi-dimensional packed arrays
-
- This removes one dimension per identifier at a time. This works fine because
- the conversions are repeatedly applied.
-
- We previously had a very complex conversion which used `generate` to make
- flattened and unflattened versions of the array as necessary. This has now
- been "simplified" to always flatten the array, and then rewrite all usages of
- the array as appropriate.
-
- Note that the ranges being combined may not be of the form [hi:lo], and need
- not even be the same direction! Because of this, we have to flip around the
- indices of certain accesses.
-}
module Convert.PackedArray (convert) where
import Control.Monad.State
import Data.Tuple (swap)
import qualified Data.Map.Strict as Map
import Convert.Traverse
import Language.SystemVerilog.AST
type DimMap = Map.Map Identifier [Range]
data Info = Info
{ sTypeDims :: DimMap
} deriving (Eq, Show)
convert :: AST -> AST
convert = traverseDescriptions convertDescription
convertDescription :: Description -> Description
convertDescription (description @ (Part _ _ _ _ _ _)) =
evalState
(initialTraverse description >>= scopedTraverse)
(Info Map.empty)
where
initialTraverse = traverseModuleItemsM traverseMIDecl
scopedTraverse = traverseModuleItemsM $
traverseScopesM traverseDeclM traverseModuleItemM traverseStmtM
traverseMIDecl :: ModuleItem -> State Info ModuleItem
traverseMIDecl (MIDecl decl) =
traverseDeclM decl >>= return . MIDecl
traverseMIDecl other = return other
convertDescription description = description
-- collects and converts multi-dimensional packed-array declarations
traverseDeclM :: Decl -> State Info Decl
traverseDeclM (origDecl @ (Variable dir t ident a me)) = do
Info typeDims <- get
let (tf, rs) = typeRanges t
if length rs <= 1
then do
put $ Info $ Map.delete ident typeDims
return origDecl
else do
put $ Info $ Map.insert ident rs typeDims
let r1 : r2 : rest = rs
let rs' = (combineRanges r1 r2) : rest
return $ Variable dir (tf rs') ident a me
traverseDeclM other = return other
-- combines two ranges into one flattened range
combineRanges :: Range -> Range -> Range
combineRanges r1 r2 = r
where
rYY = combine r1 r2
rYN = combine r1 (swap r2)
rNY = combine (swap r1) r2
rNN = combine (swap r1) (swap r2)
rY = endianCondRange r2 rYY rYN
rN = endianCondRange r2 rNY rNN
r = endianCondRange r1 rY rN
combine :: Range -> Range -> Range
combine (s1, e1) (s2, e2) =
(simplify upper, simplify lower)
where
size1 = rangeSize (s1, e1)
size2 = rangeSize (s2, e2)
lower = BinOp Add e2 (BinOp Mul e1 size2)
upper = BinOp Add (BinOp Mul size1 size2)
(BinOp Sub lower (Number "1"))
traverseModuleItemM :: ModuleItem -> State Info ModuleItem
traverseModuleItemM item =
traverseLHSsM traverseLHSM item >>=
traverseExprsM traverseExprM
traverseStmtM :: Stmt -> State Info Stmt
traverseStmtM stmt =
traverseStmtLHSsM traverseLHSM stmt >>=
traverseStmtExprsM traverseExprM
traverseExprM :: Expr -> State Info Expr
traverseExprM = traverseNestedExprsM $ stately traverseExpr
traverseLHSM :: LHS -> State Info LHS
traverseLHSM = traverseNestedLHSsM $ stately traverseLHS
traverseExpr :: Info -> Expr -> Expr
traverseExpr info =
rewriteExpr
where
typeDims = sTypeDims info
dims :: Identifier -> (Range, Range)
dims x =
(dimInner, dimOuter)
where
dimInner : dimOuter : _ = typeDims Map.! x
-- if the given range is flipped, the result will flip around the given
-- indexing expression
orientIdx :: Range -> Expr -> Expr
orientIdx r e =
endianCondExpr r e eSwapped
where
eSwapped = BinOp Sub (snd r) (BinOp Sub e (fst r))
-- Converted idents are prefixed with an invalid character to ensure
-- that are not converted twice when the traversal steps downward. When
-- the prefixed identifier is encountered at the lowest level, it is
-- removed.
tag = ':'
rewriteExpr :: Expr -> Expr
rewriteExpr (Ident x) =
if head x == tag
then Ident $ tail x
else Ident x
rewriteExpr (orig @ (Bit (Bit (Ident x) idxInner) idxOuter)) =
if Map.member x typeDims
then Bit (Ident x') idx'
else orig
where
(dimInner, dimOuter) = dims x
x' = tag : x
idxInner' = orientIdx dimInner idxInner
idxOuter' = orientIdx dimOuter idxOuter
base = BinOp Mul idxInner' (rangeSize dimOuter)
idx' = simplify $ BinOp Add base idxOuter'
rewriteExpr (orig @ (Bit (Ident x) idx)) =
if Map.member x typeDims
then Range (Ident x') mode' range'
else orig
where
(dimInner, dimOuter) = dims x
x' = tag : x
mode' = IndexedPlus
idx' = orientIdx dimInner idx
len = rangeSize dimOuter
base = BinOp Add (endianCondExpr dimOuter (snd dimOuter) (fst dimOuter)) (BinOp Mul idx' len)
range' = (simplify base, simplify len)
rewriteExpr (orig @ (Range (Ident x) mode range)) =
if Map.member x typeDims
then Range (Ident x') mode' range'
else orig
where
(_, dimOuter) = dims x
x' = tag : x
mode' = mode
size = rangeSize dimOuter
base = endianCondExpr dimOuter (snd dimOuter) (fst dimOuter)
range' =
case mode of
NonIndexed ->
(simplify hi, simplify lo)
where
lo = BinOp Mul size (snd range)
hi = BinOp Sub (BinOp Add lo (BinOp Mul (rangeSize range) size)) (Number "1")
IndexedPlus -> (BinOp Add (BinOp Mul size (fst range)) base, BinOp Mul size (snd range))
IndexedMinus -> (BinOp Add (BinOp Mul size (fst range)) base, BinOp Mul size (snd range))
rewriteExpr (orig @ (Range (Bit (Ident x) idxInner) modeOuter rangeOuter)) =
if Map.member x typeDims
then Range (Ident x') mode' range'
else orig
where
(dimInner, dimOuter) = dims x
x' = tag : x
mode' = IndexedPlus
idxInner' = orientIdx dimInner idxInner
rangeOuterReverseIndexed =
(BinOp Add (fst rangeOuter) (BinOp Sub (snd rangeOuter)
(Number "1")), snd rangeOuter)
(baseOuter, lenOuter) =
case modeOuter of
IndexedPlus ->
endianCondRange dimOuter rangeOuter rangeOuterReverseIndexed
IndexedMinus ->
endianCondRange dimOuter rangeOuterReverseIndexed rangeOuter
NonIndexed ->
(endianCondExpr dimOuter (snd rangeOuter) (fst rangeOuter), rangeSize rangeOuter)
idxOuter' = orientIdx dimOuter baseOuter
start = BinOp Mul idxInner' (rangeSize dimOuter)
base = simplify $ BinOp Add start idxOuter'
len = lenOuter
range' = (base, len)
rewriteExpr other = other
-- LHSs need to be converted too. Rather than duplicating the procedures, we
-- turn the relevant LHSs into expressions temporarily and use the expression
-- conversion written above.
traverseLHS :: Info -> LHS -> LHS
traverseLHS info =
rewriteLHS
where
typeDims = sTypeDims info
rewriteExpr = traverseExpr info
2019-03-01 00:04:34 +01:00
rewriteLHS :: LHS -> LHS
rewriteLHS (LHSIdent x) =
LHSIdent x'
where Ident x' = rewriteExpr (Ident x)
rewriteLHS (orig @ (LHSBit (LHSBit (LHSIdent x) idxInner) idxOuter)) =
if Map.member x typeDims
then LHSBit (LHSIdent x') idx'
else orig
where Bit (Ident x') idx' =
rewriteExpr (Bit (Bit (Ident x) idxInner) idxOuter)
rewriteLHS (orig @ (LHSBit (LHSRange (LHSIdent x) modeInner rangeInner) idxOuter)) =
if Map.member x typeDims
then LHSRange (LHSIdent x') mode' range'
else orig
where Range (Ident x') mode' range' =
rewriteExpr (Bit (Range (Ident x) modeInner rangeInner) idxOuter)
rewriteLHS (orig @ (LHSBit (LHSIdent x) idx)) =
if Map.member x typeDims
then LHSRange (LHSIdent x') mode' range'
else orig
where Range (Ident x') mode' range' = rewriteExpr (Bit (Ident x) idx)
rewriteLHS (orig @ (LHSRange (LHSIdent x) mode range)) =
if Map.member x typeDims
then LHSRange (LHSIdent x') mode' range'
else orig
where Range (Ident x') mode' range' =
rewriteExpr (Range (Ident x) mode range)
rewriteLHS (orig @ (LHSRange (LHSBit (LHSIdent x) idxInner) modeOuter rangeOuter)) =
if Map.member x typeDims
then LHSRange (LHSIdent x') mode' range'
else orig
where Range (Ident x') mode' range' =
rewriteExpr (Range (Bit (Ident x) idxInner) modeOuter rangeOuter)
rewriteLHS other = other