* Can provide suggestions for how to define a plugin given a context (a loaded Project in practice).
* When a user requests an undefined key at the command line, can indicate whether any (deactivated) plugins provide the key.
TODO:
* Hook up to the key parser
* Implement 'help <plugin>'
* Determine how to best provide the context (the current project is often an aggregating root, which is not typically a useful context)
The c7f435026f introduced a new parameter
to the constructor of `CompileSetup` but it turns out that this class
is being used in zinc. Introduce an overloaded variant of that constructor
that preserves backwards compatibility.
The CompileSetup class is being used to detect changes to arguments of
incremental compiler that affect result of compilation and trigger
recompilation. Examples of such arguments include, the target (output)
directory, Scala compiler options, Scala compiler version, etc.
By adding `nameHashing` to CompileSetup we have a chance to handle change
to that flag smoothly by throwing away old Analysis object and starting
with an empty one. That's implemented in AggressiveComile by extending
the logic that was responsible for detection of changes to CompileSetup
values. Thanks to this change we fix#1081.
Analysis formats has been updated to support persisting of newly added
value in CompileSetup. We used to not store the value of `nameHashing`
flag in persisted Analysis file and infer it from contents of relations
but that leads to issue #1071 when empty relations are involved. Given
the fact that CompileSetup stores `nameHashing` value now, we can just
use it when reading relations and fix#1071. This requires reading/writing
compile setup before reading relations. I decided to make that change even
if there's a comment saying that reading/writing relations first was done
intentionally.
This commit makes the code source compatible across Scala 2.10.3
and https://github.com/scala/scala/pull/3452, which is proposed
for inclusion in Scala 2.11.0-RC1.
We only strictly need the incremental compiler to build on Scala
2.11, as that is integrated into the IDE. But we gain valuable
insight into compiler regressions by building *all* of SBT with
2.11.
We only got there recently (the 0.13 branch of SBT now fully cross
compiles with 2.10.3 and 2.11.0-SNAPSHOT), and this aims to keep
things that way.
Once 2.10 support is dropped, SBT macros will be able to exploit
the new reflection APIs in 2.11 to avoid the need for casting
to compiler internals, which aren't governed by binary compatibility.
This has been prototyped by @xeno-by: https://github.com/sbt/sbt/pull/1121
The ff0fd6eec6 introduced some exclusions
that were necessary for getting sbt to resolve dependencies properly
against Scala 2.11.0-M7.
Scala 2.11.0-M8 fixed its dependency structure so we can get rid of those
exclusions now.
Since the fix for SI-2066, Scala 2.11 calls logicallyEnclosingMember on the
`x` in the expansion of the task macro:
InitializeInstance.app[[T0[x]](T0[java.io.File], T0[java.io.File]), Seq[java.io.File]]
This exposed the fact that SBT has created `T0` with `NoSymbol` as
the owner. This led to the a SOE.
I will also change the compiler to be more tolerant of this, but we
can observe good discipline in the macro and pick a sensible owner.
We now have `global.Range`, so our wildcard import of `global._`
shadows `scala.Range`.
This commit fully qualifies that type so as to be compatible with
Scala 2.10 and 2.11.
- remove AutoPlugin.provides
* name comes from module name
* AutoPlugin is Nature-like via Basic
- Project.addNatures only accepts varags of Nature values
* enforces that a user cannot explicitly enable an AutoPlugin
* drops need for && and - combinators
- Project.excludeNatures accepts varags of AutoPlugin values
* enforces that only AutoPlugins can be excluded
* drops need for && and - combinators
Untyped trees underneath typed trees makes Jack and sad boy.
And they make superaccessors a sad phase.
The recent refactoring to retain original types in the trees
representing the argument to the task macro meant that the `value`
macro also was changed to try to avoid this untyped-under-typed
problem. However, it didn't go deep enough, and left the child
trees of the placeholder tree `InputWrapper.wrap[T](key)` untyped.
This commit uses `c.typeCheck` to locally typeheck that tree fully
instead.
Fixes#1031
Catch ReadException and wrap it in IOException that carries the name
of the file we failed to read in its message.
We have to catch exception and wrap them because in TextAnalysisFormat
we don't have an access to the file name (it operates using an abstract
reader).
Still TODO for auto-plugins/logic:
* property-based tests for logic system
* user documentation
* (optional) 'about plugins' or similar to show more information about the auto-plugins for a project
* (deferred) allow AutoPlugin to inject Commands directly?
* (deferred) provide AutoPlugin functionality to arbitrary scopes instead of just at the Project level?