In 2.11, the implicit version is named `$conforms` so as to avoid
accidental shadowing by user code, which renders methods using
views and subtype bounds inexplicable unusable.
But, SBT intentionally needs to hide it to make the implicits
in this file line up.
This commit opts-in the the required identifiers from Predef,
rather than opting out of conforms. This makes the same code
source compatible with 2.10 and 2.11.
* 'plugins' displays the list of plugins available for each build along with the project IDs each is enabled on
* 'plugin <name>' displays information about a specific plugin in the context of the current project
- if the plugin is activated on the current project and if so, information about the keys/configurations it provides
- how the plugin could be activated if possible
* tries to detect when it is run on an aggregating project and adjusts accordingly
- indicates if an aggregated project has the plugin activated
- indicates to change to the specific project to get the right context
This is a rough implementation and needs lots of polishing and deduplicating.
The help for the commands needs to be added/expanded.
* Can provide suggestions for how to define a plugin given a context (a loaded Project in practice).
* When a user requests an undefined key at the command line, can indicate whether any (deactivated) plugins provide the key.
TODO:
* Hook up to the key parser
* Implement 'help <plugin>'
* Determine how to best provide the context (the current project is often an aggregating root, which is not typically a useful context)
This commit makes the code source compatible across Scala 2.10.3
and https://github.com/scala/scala/pull/3452, which is proposed
for inclusion in Scala 2.11.0-RC1.
We only strictly need the incremental compiler to build on Scala
2.11, as that is integrated into the IDE. But we gain valuable
insight into compiler regressions by building *all* of SBT with
2.11.
We only got there recently (the 0.13 branch of SBT now fully cross
compiles with 2.10.3 and 2.11.0-SNAPSHOT), and this aims to keep
things that way.
Once 2.10 support is dropped, SBT macros will be able to exploit
the new reflection APIs in 2.11 to avoid the need for casting
to compiler internals, which aren't governed by binary compatibility.
This has been prototyped by @xeno-by: https://github.com/sbt/sbt/pull/1121
We now have `global.Range`, so our wildcard import of `global._`
shadows `scala.Range`.
This commit fully qualifies that type so as to be compatible with
Scala 2.10 and 2.11.
- remove AutoPlugin.provides
* name comes from module name
* AutoPlugin is Nature-like via Basic
- Project.addNatures only accepts varags of Nature values
* enforces that a user cannot explicitly enable an AutoPlugin
* drops need for && and - combinators
- Project.excludeNatures accepts varags of AutoPlugin values
* enforces that only AutoPlugins can be excluded
* drops need for && and - combinators
Untyped trees underneath typed trees makes Jack and sad boy.
And they make superaccessors a sad phase.
The recent refactoring to retain original types in the trees
representing the argument to the task macro meant that the `value`
macro also was changed to try to avoid this untyped-under-typed
problem. However, it didn't go deep enough, and left the child
trees of the placeholder tree `InputWrapper.wrap[T](key)` untyped.
This commit uses `c.typeCheck` to locally typeheck that tree fully
instead.
Fixes#1031
* Alter the TaskProgress listener key to be `State => TaskProgress` so it
can be instantiated from the current server/sbt state.
* Expose the xsbti.Reporter interface for compilation through to sbt builds.
This requires a Format[T] to be implicitly available at the call site and requires the task
to be referenced statically (not in a settingDyn call). References to previous task values
in the form of a ScopedKey[Task[T]] + Format[T] are collected at setting load time in the
'references' setting. These are used to know which tasks should be persisted (the ScopedKey)
and how to persist them (the Format).
When checking/delegating previous references, rules are slightly different.
A normal reference from a task t in scope s cannot refer to t in s unless
there is an earlier definition of t in s. However, a previous reference
does not have this restriction. This commit modifies validateReferenced
to allow this.
TODO: user documentation
TODO: stable selection of the Format when there are multiple .previous calls on the same task
TODO: make it usable in InputTasks, specifically Parsers
This avoids an additional cause of recursion via the semicolon/multiple command, which fixes#933.
It also provides error messages on the expanded command. This fixes#598.
The fix was made possible by the very helpful information provided by @retronym.
This commit does two key things:
1. changes the owner when splicing original trees into new trees
2. ensures the synthetic trees that get spliced into original trees do not need typechecking
Given this original source (from Defaults.scala):
...
lazy val sourceConfigPaths = Seq(
...
unmanagedSourceDirectories := Seq(scalaSource.value, javaSource.value),
...
)
...
After expansion of .value, this looks something like:
unmanagedSourceDirectories := Seq(
InputWrapper.wrapInit[File](scalaSource),
InputWrapper.wrapInit[File](javaSource)
)
where wrapInit is something like:
def wrapInit[T](a: Any): T
After expansion of := we have (approximately):
unmanagedSourceDirectories <<=
Instance.app( (scalaSource, javaSource) ) {
$p1: (File, File) =>
val $q4: File = $p1._1
val $q3: File = $p1._2
Seq($q3, $q4)
}
So,
a) `scalaSource` and `javaSource` are user trees that are spliced into a tuple constructor after being temporarily held in `InputWrapper.wrapInit`
b) the constructed tuple `(scalaSource, javaSource)` is passed as an argument to another method call (without going through a val or anything) and shouldn't need owner changing
c) the synthetic vals $q3 and $q4 need their owner properly set to the anonymous function
d) the references (Idents) $q3 and $q4 are spliced into the user tree `Seq(..., ...)` and their symbols need to be the Symbol for the referenced vals
e) generally, treeCopy needs to be used when substituting Trees in order to preserve attributes, like Types and Positions
changeOwner is called on the body `Seq($q3, $q4)` with the original owner sourceConfigPaths to be changed to the new anonymous function.
In this example, no owners are actually changed, but when the body contains vals or anonymous functions, they will.
An example of the compiler crash seen when the symbol of the references is not that of the vals:
symbol value $q3 does not exist in sbt.Defaults.sourceConfigPaths$lzycompute
at scala.reflect.internal.SymbolTable.abort(SymbolTable.scala:49)
at scala.tools.nsc.Global.abort(Global.scala:254)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase.genLoadIdent$1(GenICode.scala:1038)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase.scala$tools$nsc$backend$icode$GenICode$ICodePhase$$genLoad(GenICode.scala:1044)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase$$anonfun$genLoadArguments$1.apply(GenICode.scala:1246)
at scala.tools.nsc.backend.icode.GenICode$ICodePhase$$anonfun$genLoadArguments$1.apply(GenICode.scala:1244)
...
Other problems with the synthetic tree when it is spliced under the original tree often result in type mismatches or some other compiler error that doesn't result in a crash.
If the owner is not changed correctly on the original tree that gets spliced under a synthetic tree, one way it can crash the compiler is:
java.lang.IllegalArgumentException: Could not find proxy for val $q23: java.io.File in List(value $q23, method apply, anonymous class $anonfun$globalCore$5, value globalCore, object Defaults, package sbt, package <root>) (currentOwner= value dir )
...
while compiling: /home/mark/code/sbt/main/src/main/scala/sbt/Defaults.scala
during phase: global=lambdalift, atPhase=constructors
...
last tree to typer: term $outer
symbol: value $outer (flags: <synthetic> <paramaccessor> <triedcooking> private[this])
symbol definition: private[this] val $outer: sbt.BuildCommon
tpe: <notype>
symbol owners: value $outer -> anonymous class $anonfun$87 -> value x$298 -> method derive -> class BuildCommon$class -> package sbt
context owners: value dir -> value globalCore -> object Defaults -> package sbt
...
The problem here is the difference between context owners and the proxy search chain.
This feature is not activated by default. To enable it set `testForkedParallel` to `true`.
The test-agent then executes the tests in a thread pool.
For now it has a fixed size set to the number of available processors.
The concurrent restrictions configuration should be used.
The completions command is meant for dump terminals that cannot use
the default tab completion. It has been built for use by the emacs
sbt-mode (see https://github.com/hvesalai/sbt-mode), but is equally
useful for other code editors that can integrate with sbt.
This is a temporary workaround: it assumes nothing else uses these streams later.
This condition is ok for 'export' and test streams, since these are unlikely to
reuse these streams. However, the proper fix is for the TaskStreams methods
to be smarter- they could open in append mode if the stream was closed. The
streams associated with a task could be optimistically closed after it finishes executing.
(Any task can write to another task's streams, which is why it is an optimization only.)