openFPGALoader/src/spiFlash.cpp

482 lines
11 KiB
C++
Raw Normal View History

2021-06-26 15:24:07 +02:00
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2019 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <cmath>
#include <iostream>
#include "progressBar.hpp"
2021-07-11 11:32:10 +02:00
#include "display.hpp"
#include "spiFlash.hpp"
#include "spiFlashdb.hpp"
#include "spiInterface.hpp"
/* read/write status register : 0B addr + 0 dummy */
#define FLASH_WRSR 0x01
#define FLASH_RDSR 0x05
# define FLASH_RDSR_WIP (0x01)
# define FLASH_RDSR_WEL (0x02)
/* flash program */
#define FLASH_PP 0x02
/* write [en|dis]able : 0B addr + 0 dummy */
#define FLASH_WRDIS 0x04
#define FLASH_WREN 0x06
/* Read OTP : 3 B addr + 8 clk cycle*/
#define FLASH_ROTP 0x4B
#define FLASH_POWER_UP 0xAB
#define FLASH_POWER_DOWN 0xB9
/* read/write non volatile register: 0B addr + 0 dummy */
#define FLASH_RDNVCR 0xB5
#define FLASH_WRNVCR 0xB1
/* read/write volatile register */
#define FLASH_RDVCR 0x85
#define FLASH_WRVCR 0x81
/* bulk erase */
#define FLASH_BE 0xC7
/* sector (64kb) erase */
#define FLASH_SE 0xD8
/* read/write lock register : 3B addr + 0 dummy */
#define FLASH_WRLR 0xE5
#define FLASH_RDLR 0xE8
/* read/clear flag status register : 0B addr + 0 dummy */
#define FLASH_CLFSR 0x50
#define FLASH_RFSR 0x70
/* */
#define FLASH_WRVECR 0x61
#define FLASH_RDVECR 0x65
/* microchip SST26VF032B / SST26VF032BA */
/* Read Block Protection Register */
#define FLASH_RBPR 0x72
/* Global Block Protection unlock */
#define FLASH_ULBPR 0x98
SPIFlash::SPIFlash(SPIInterface *spi, int8_t verbose):_spi(spi),
_verbose(verbose), _jedec_id(0), _flash_model(NULL)
{
read_id();
}
int SPIFlash::bulk_erase()
{
if (write_enable() == -1)
return -1;
_spi->spi_put(FLASH_BE, NULL, NULL, 0);
return _spi->spi_wait(FLASH_RDSR, FLASH_RDSR_WIP, 0x00, 100000, true);
}
int SPIFlash::sector_erase(int addr)
{
uint8_t tx[4];
tx[0] = (uint8_t)(FLASH_SE );
tx[1] = (uint8_t)(0xff & (addr >> 16));
tx[2] = (uint8_t)(0xff & (addr >> 8));
tx[3] = (uint8_t)(0xff & (addr ));
_spi->spi_put(tx, NULL, 4);
return 0;
}
int SPIFlash::sectors_erase(int base_addr, int size)
{
int ret = 0;
int start_addr = base_addr;
int end_addr = (base_addr + size + 0xffff) & ~0xffff;
ProgressBar progress("Erasing", end_addr, 50, _verbose < 0);
for (int addr = start_addr; addr < end_addr; addr += 0x10000) {
if (write_enable() == -1) {
ret = -1;
break;
}
if (sector_erase(addr) == -1) {
ret = -1;
break;
}
if (_spi->spi_wait(FLASH_RDSR, FLASH_RDSR_WIP, 0x00, 100000, false) == -1) {
ret = -1;
break;
}
progress.display(addr);
}
if (ret == 0)
progress.done();
else
progress.fail();
return ret;
}
2020-03-15 08:22:29 +01:00
int SPIFlash::write_page(int addr, uint8_t *data, int len)
{
2020-03-15 08:22:29 +01:00
uint8_t tx[len+3];
tx[0] = (uint8_t)(0xff & (addr >> 16));
tx[1] = (uint8_t)(0xff & (addr >> 8));
tx[2] = (uint8_t)(0xff & (addr ));
memcpy(tx+3, data, len);
if (write_enable() == -1)
return -1;
_spi->spi_put(FLASH_PP, tx, NULL, len+3);
return _spi->spi_wait(FLASH_RDSR, FLASH_RDSR_WIP, 0x00, 1000);
}
int SPIFlash::read(int base_addr, uint8_t *data, int len)
{
uint8_t tx[len+3];
uint8_t rx[len+3];
tx[0] = (uint8_t)(0xff & (base_addr >> 16));
tx[1] = (uint8_t)(0xff & (base_addr >> 8));
tx[2] = (uint8_t)(0xff & (base_addr ));
int ret = _spi->spi_put(0x03, tx, rx, len+3);
if (ret == 0)
memcpy(data, rx+3, len);
else
printf("error\n");
return ret;
}
2021-07-11 11:32:10 +02:00
bool SPIFlash::dump(const std::string &filename, const int &base_addr,
const int &len, int rd_burst)
{
if (rd_burst == 0)
rd_burst = len;
2021-10-02 19:25:04 +02:00
/* segfault with buffer > 1M */
if (rd_burst > 0x100000)
rd_burst = 0x100000;
2021-07-11 11:32:10 +02:00
std::string data;
data.resize(rd_burst);
printInfo("dump flash (May take time)");
printInfo("Open dump file ", false);
FILE *fd = fopen(filename.c_str(), "wb");
if (!fd) {
printError("FAIL");
return false;
} else {
printSuccess("DONE");
}
ProgressBar progress("Read flash ", len, 50, false);
for (int i = 0; i < len; i += rd_burst) {
if (rd_burst + i > len)
rd_burst = len - i;
if (0 != read(base_addr + i, (uint8_t*)&data[0], rd_burst)) {
progress.fail();
printError("Failed to read flash");
fclose(fd);
return false;
}
fwrite(data.c_str(), sizeof(uint8_t), rd_burst, fd);
progress.display(i);
}
progress.done();
fclose(fd);
return true;
}
int SPIFlash::erase_and_prog(int base_addr, uint8_t *data, int len)
{
if (_jedec_id == 0)
read_id();
/* check Block Protect Bits */
if (_jedec_id == 0xbf2642bf) { // microchip SST26VF032B
if (!global_unlock())
return -1;
} else {
uint8_t status = read_status_reg();
if ((status & 0x1c) !=0) {
if (write_enable() != 0)
return -1;
if (disable_protection() != 0)
return -1;
}
}
ProgressBar progress("Writing", len, 50, _verbose < 0);
if (sectors_erase(base_addr, len) == -1)
return -1;
uint8_t *ptr = data;
int size = 0;
for (int addr = 0; addr < len; addr += size, ptr+=size) {
size = (addr + 256 > len)?(len-addr) : 256;
if (write_page(base_addr + addr, ptr, size) == -1)
return -1;
progress.display(addr);
}
progress.done();
return 0;
}
2021-07-11 11:32:10 +02:00
bool SPIFlash::verify(const int &base_addr, const uint8_t *data,
const int &len, int rd_burst)
{
if (rd_burst == 0)
rd_burst = len;
printInfo("Verifying write (May take time)");
std::string verify_data;
verify_data.resize(rd_burst);
ProgressBar progress("Read flash ", len, 50, false);
for (int i = 0; i < len; i += rd_burst) {
if (rd_burst + i > len)
rd_burst = len - i;
if (0 != read(base_addr + i, (uint8_t*)&verify_data[0], rd_burst)) {
progress.fail();
printError("Failed to read flash");
return false;
}
for (int ii = 0; ii < rd_burst; ii++) {
if ((uint8_t)verify_data[ii] != data[i+ii]) {
progress.fail();
printError("Verification failed at " +
std::to_string(base_addr + i + ii));
return false;
}
}
progress.display(i);
}
progress.done();
return true;
}
void SPIFlash::reset()
{
uint8_t data[8];
memset(data, 0xff, 8);
_spi->spi_put(0xff, data, NULL, 8);
}
void SPIFlash::read_id()
{
int len = 4;
uint8_t rx[512];
bool has_edid = false;
_spi->spi_put(0x9F, NULL, rx, 4);
2021-05-05 06:25:00 +02:00
_jedec_id = 0;
for (int i=0; i < 4; i++) {
2021-05-05 06:25:00 +02:00
_jedec_id = _jedec_id << 8;
_jedec_id |= (0x00ff & (int)rx[i]);
if (_verbose > 0)
2019-11-21 09:19:48 +01:00
printf("%x ", rx[i]);
}
if (_verbose > 0)
2021-05-05 06:25:00 +02:00
printf("read %x\n", _jedec_id);
auto t = flash_list.find(_jedec_id >> 8);
if (t != flash_list.end()) {
_flash_model = &(*t).second;
char content[256];
snprintf(content, 256, "Detected: %s %s %u sectors size: %uMb",
_flash_model->manufacturer.c_str(), _flash_model->model.c_str(),
_flash_model->nr_sector, _flash_model->nr_sector * 0x80000 / 1048576);
printInfo(content);
} else {
/* read extented */
if ((_jedec_id & 0xff) != 0) {
has_edid = true;
len += (_jedec_id & 0x0ff);
_spi->spi_put(0x9F, NULL, rx, len);
}
/* must be 0x20BA1810 ... */
printf("Detail: \n");
printf("Jedec ID : %02x\n", rx[0]);
printf("memory type : %02x\n", rx[1]);
printf("memory capacity : %02x\n", rx[2]);
if (has_edid) {
printf("EDID + CFD length : %02x\n", rx[3]);
printf("EDID : %02x%02x\n", rx[5], rx[4]);
printf("CFD : ");
if (_verbose > 0) {
for (int i = 6; i < len; i++)
printf("%02x ", rx[i]);
printf("\n");
} else {
printf("\n");
}
}
2019-11-21 09:19:48 +01:00
}
}
void SPIFlash::display_status_reg(uint8_t reg)
{
uint8_t tb, bp;
if (!_flash_model) {
tb = (reg >> 5) & 0x01;
bp = (((reg >> 6) & 0x01) << 3) | ((reg >> 2) & 0x07);
} else {
tb = (reg & _flash_model->tb_offset) ? 1 : 0;
bp = 0;
for (int i = 0; i < _flash_model->bp_len; i++)
if (reg & _flash_model->bp_offset[i])
bp |= 1 << i;
}
printf("RDSR : %02x\n", reg);
printf("WIP : %d\n", reg&0x01);
printf("WEL : %d\n", (reg>>1)&0x01);
printf("BP : %x\n", bp);
printf("TB : %d\n", tb);
printf("SRWD : %d\n", (((reg>>7)&0x01)));
}
2019-11-21 09:19:48 +01:00
uint8_t SPIFlash::read_status_reg()
{
uint8_t rx;
_spi->spi_put(FLASH_RDSR, NULL, &rx, 1);
return rx;
}
uint16_t SPIFlash::readNonVolatileCfgReg()
{
uint8_t rx[2];
_spi->spi_put(FLASH_RDNVCR, NULL, rx, 2);
if (_verbose > 0)
printf("Non Volatile %x %x\n", rx[0], rx[1]);
return (rx[1] << 8) | rx[0];
}
uint16_t SPIFlash::readVolatileCfgReg()
{
uint8_t rx[2];
_spi->spi_put(FLASH_RDVCR, NULL, rx, 2);
if (_verbose > 0)
printf("Volatile %x %x\n", rx[0], rx[1]);
return (rx[1] << 8) | rx[0];
}
void SPIFlash::power_up()
{
_spi->spi_put(FLASH_POWER_UP, NULL, NULL, 0);
}
void SPIFlash::power_down()
{
_spi->spi_put(FLASH_POWER_DOWN, NULL, NULL, 0);
}
2019-11-21 09:19:48 +01:00
int SPIFlash::write_enable()
{
_spi->spi_put(FLASH_WREN, NULL, NULL, 0);
/* wait WEL */
if (_spi->spi_wait(FLASH_RDSR, FLASH_RDSR_WEL, FLASH_RDSR_WEL, 1000)) {
printf("write en: Error\n");
return -1;
}
return 0;
}
int SPIFlash::write_disable()
{
_spi->spi_put(FLASH_WRDIS, NULL, NULL, 0);
/* wait ! WEL */
int ret = _spi->spi_wait(FLASH_RDSR, FLASH_RDSR_WEL, 0x00, 1000);
if (ret == -1)
printf("write disable: Error\n");
else if (_verbose > 0)
printf("write disable: Success\n");
return ret;
}
int SPIFlash::disable_protection()
{
uint8_t data = 0x00;
_spi->spi_put(FLASH_WRSR, &data, NULL, 1);
if (_spi->spi_wait(FLASH_RDSR, 0xff, 0, 1000) < 0)
return -1;
/* read status */
if (read_status_reg() != 0) {
std::cout << "disable protection failed" << std::endl;
return -1;
} else
return 0;
}
/* convert bp area (status register) to len in byte */
uint32_t SPIFlash::bp_to_len(uint8_t bp)
{
2021-10-10 18:27:41 +02:00
/* 0 -> no block protected */
if (bp == 0)
return 0;
/* reconstruct code based on each BPx bit */
uint8_t tmp = 0;
for (int i = 0; i < 4; i++)
if ((bp & _flash_model->bp_offset[i]))
tmp |= (1 << i);
2021-10-10 18:27:41 +02:00
/* bp code is 2^(bp-1) blocks */
uint16_t nr_sectors = (1 << (tmp-1));
return nr_sectors * 0x10000;
}
2021-10-10 18:27:41 +02:00
/* convert len (in byte) to bp (block protection) */
uint8_t SPIFlash::len_to_bp(uint32_t len)
{
2021-10-10 18:27:41 +02:00
/* 0 -> no block to protect */
if (len == 0)
return 0;
/* round and divide by sector size */
len = ((len + 0xffff) & ~0xffff) / 0x10000;
/* convert size to basic BP code */
uint8_t bp = 1 + static_cast<int>(ceil(log2(len)));
/* reconstruct code based on each BPx bit */
uint8_t tmp = 0;
for (int i = 0; i < 4; i++)
2021-10-18 07:34:27 +02:00
if (bp & (1 << i))
tmp |= _flash_model->bp_offset[i];
return tmp;
}
/* microchip SST26VF032B has a dedicated register
* to read sectors (un)lock status and another one to unlock
* sectors
*/
bool SPIFlash::global_unlock()
{
if (write_enable() != 0)
return false;
_spi->spi_put(FLASH_ULBPR, NULL, NULL, 0);
if (_spi->spi_wait(FLASH_RDSR, 0xff, 0, 1000) < 0)
return false;
/* check if all sectors are unlocked */
uint8_t rx2[10];
_spi->spi_put(FLASH_RBPR, NULL, rx2, 10);
printf("Non Volatile\n");
for (int i = 0; i < 10; i++) {
if (rx2[i] != 0)
return false;
}
return true;
}