Added examples for periodic steady state analysis (examples from Stefano Perticaroli).

This commit is contained in:
pnenzi 2011-08-04 18:58:30 +00:00
parent 899d5516c3
commit 72cfa6d99d
6 changed files with 138 additions and 0 deletions

View File

@ -0,0 +1,22 @@
Colpitt's Oscillator Circuit
* Colpitt is an harmonic oscillator (LC based) which use
* a capacitive partition of resonator to feed the single
* active device.
* Prediceted frequency is about 3.33945e+06 Hz.
* Models:
.model qnl npn(level=1 bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cje=3pf cjc=2pf va=50)
r1 1 0 1
q1 2 1 3 qnl
vcc 4 0 5
rl 4 2 750
c1 2 3 500p
c2 4 3 4500p
l1 4 2 5uH
re 3 6 4.65k
vee 6 0 dc -10 pwl 0 0 1e-9 -10
*.tran 30n 12u
.pss 4e6 500e-6 3 1024 11 uic 50 5e-3

View File

@ -0,0 +1,33 @@
Complimentary Cross Quad CMOS Oscillator
* Predicted frequency is 5.59197e+08 Hz.
* Supply
vdd vdd gnd 1.2 pwl 0 1.2 1e-9 1.2
rdd vdd vdd_ana 70m
rgnd gnd gnd_ana 70m
* Cross quad
mpsx v_plus v_minus vdd_ana vdd_ana pch w=10u l=0.1u
mnsx v_plus v_minus gnd_ana gnd_ana nch w=10u l=0.1u
mpdx v_minus v_plus vdd_ana vdd_ana pch w=10u l=0.1u
mndx v_minus v_plus gnd_ana gnd_ana nch w=10u l=0.1u
* Lumped elements model of real inductor
ls v_plus i1 19.462n ic=0.06
rs i1 v_minus 7.789
cs v_plus v_minus 443f
coxs v_plus is 2.178p
coxd v_minus id 2.178p
rsis is gnd_ana 308
rsid id gnd_ana 308
csis is gnd_ana 51f
csid id gnd_ana 51f
* Parallel capacitor to determine leading resonance
cp v_plus v_minus 3.4p
.model nch nmos ( version=4.4 level=54 lmin=0.1u lmax=20u wmin=0.1u wmax=10u )
.model pch pmos ( version=4.4 level=54 lmin=0.1u lmax=20u wmin=0.1u wmax=10u )
*.tran 0.05n 1u uic
.pss 624e6 1u v_plus 1024 10 uic 50 5e-3

View File

@ -0,0 +1,19 @@
Hartley's Oscillator Circuit
* Hartley is an harmonic oscillator (LC based) which use
* an inductive partition of resonator to feed the single
* active device. Output is taken on node 2.
* Prediceted frequency is about 122.06 Hz.
* Models:
.model qnl npn(level=1 bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cje=3pf cjc=2pf va=50)
vcc 1 0 5 pwl 0 0 1e-5 5
r1 1 2 0.2k
q1 2 3 0 qnl
c1 3 4 633n
l1 3 0 1.5
l2 0 4 500m
r2 4 2 100
*.tran 300n 50m
.pss 150 200e-3 2 1024 11 uic 50 5e-3

View File

@ -0,0 +1,26 @@
Ring CMOS Oscillator
* Predicted frequency is 3.84841e+09 Hz.
* Supply
vdd vdd gnd 1.2 pwl 0 1.2 1e-9 1.2
rdd vdd vdd_ana 70m
rgnd gnd gnd_ana 70m
* Inverter
mp1 inv1 inv3 vdd_ana vdd_ana pch w=10u l=0.18u
mn1 inv1 inv3 gnd_ana gnd_ana nch w=10u l=0.18u
mp2 inv2 inv1 vdd_ana vdd_ana pch w=10u l=0.18u
mn2 inv2 inv1 gnd_ana gnd_ana nch w=10u l=0.18u
mp3 inv3 inv2 vdd_ana vdd_ana pch w=10u l=0.18u
mn3 inv3 inv2 gnd_ana gnd_ana nch w=10u l=0.18u
* Buffer out
mp4 bout inv3 vdd_ana vdd_ana pch w=10u l=0.18u
mn4 bout inv3 gnd_ana gnd_ana nch w=10u l=0.18u
.model nch nmos ( version=4.4 level=54 lmin=0.1u lmax=20u wmin=0.1u wmax=10u )
.model pch pmos ( version=4.4 level=54 lmin=0.1u lmax=20u wmin=0.1u wmax=10u )
*.tran 0.005n 100n
*.plot tran v(4)
.pss 624e6 500n bout 1024 10 uic 100 5e-3

View File

@ -0,0 +1,21 @@
Vackar's Oscillator Circuit
* Vackar is a derivation of Colpitt's oscillator (LC based).
* Oscillation is taken on node 4.
* Predicted frequency is 1.92291e+06Hz.
* Models:
.model qnl npn(level=1 bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cje=3pf cjc=2pf va=50)
vcc 1 0 5 pwl 0 10 1e-9 5
lrfc 1 2 100u
cdec 2 0 7n
q1 3 2 0 qnl
rb 3 0 4700
c1 3 4 100p
c2 3 0 600p
c0 4 0 1n
l1 4 1 6.2u
*.tran 30n 12u
*.plot tran v(4)
.pss 4e6 10e-6 4 1024 10 uic 50 5e-3

17
tests/pss/vdp_osc_pss.cir Normal file
View File

@ -0,0 +1,17 @@
Van Der Pol Oscillator
* Prediceted frequency is about 4.58957e+06 Hz.
* Third harmonic is high as the first one
Ba gib 0 I=-1e-2*v(gib,0)+1e-2*v(gib,0)^3
* Q is about 10
La gib 0 1.2e-6
Ra gib 0 158.113
Ca gib 0 1e-9 ic=0.5
*La gib 0 1e-9
*Ra gib 0 474.6
*Ca gib 0 1e-9 ic=0.5
* Ghost node... Test for my PSS!
Rb bad 0 1k
*.tran 1e-9 150e-6 uic
.pss 0.8e6 130e-6 gib 1024 11 uic 50 5e-3