Added some examples.

This commit is contained in:
pnenzi 2004-08-09 16:20:23 +00:00
parent 200a5b9c07
commit 4af6137cd3
63 changed files with 4083 additions and 0 deletions

View File

@ -0,0 +1,41 @@
This directory holds a SPICE netlist with SPICE2 POLY constructs in
controlled sources as typically found in vendor models. The circuit
is just a two-stage transimpedance amp using an AD8009,
along with some slow components (AD780 and OP177A) to set bias
points. Vendor models are used for all active components.
Successfully running this test shows that you have successfully built
the XSpice stuff with the POLY codemodel, and that you should be able
to simulate SPICE netlists with embedded vendor models.
To run this netlist, just do the following:
[localhost]# ngspice
ngspice 1 -> source output.net
ngspice 2 -> run
ngspice 3 -> plot Vout2
(Note that when you read in the netlist, you will get a bunch of
warnings saying stuff like:
Warning -- Level not specified on line "()"
Using level 1.
Also, ngspice will complain about:
Error on line 50 : r:u101:1 u101:40 0 1e3 tc=7e-6
unknown parameter (tc)
Error on line 283 : .temp 0 25 50 75 100
Warning: .TEMP card obsolete - use .options TEMP and TNOM
You can ignore all this stuff . . . .)
You should get a pop-up window showing two square pulses (the second
smaller than the first) with a little bit of overshoot on the rising
and falling edges.
This stuff was done as an adjunct to work on the gEDA project.
Information about gEDA is available at http://geda.seul.org/ .
Please direct all questions/suggestions/bugs/complaints about XSpice
extensions to ngspice to Stuart Brorson -- mailto:sdb@cloud9.net.
6.23.2002 -- SDB.

View File

@ -0,0 +1,460 @@
*********************************************************
* Spice file generated by gnetlist *
* spice-SDB version 3.30.2003 by SDB -- *
* provides advanced spice netlisting capability. *
* Documentation at http://www.brorson.com/gEDA/SPICE/ *
*********************************************************
* Command stuff
.options gmin=1e-9
.options abstol=1e-11
* .ac dec 10 10MegHz 10 Ghz
* Remainder of file
R112 0 6 1Meg
R111 0 8 10Meg
R110 0 7 1Meg
Rref2in 11 VU780out 25000
Rref2fb VU2bias+ 11 33
C201 0 9 1uF
C202 10 0 1uF
XU200 0 11 10 9 VU2bias+ OP177A
R202 10 +5V 22
R201 -5V 9 22
Rref1in VU100in- VU780out 9130
Rref1fb VU1bias+ VU100in- 33
XU101 +5V 7 0 6 VU780out 8 AD780A
* AD780A SPICE Macromodel 5/93, Rev. A
* AAG / PMI
*
* This version of the AD780 voltage reference model simulates the worst case
* parameters of the 'A' grade. The worst case parameters used
* correspond to those in the data sheet.
*
* Copyright 1993 by Analog Devices, Inc.
*
* Refer to "README.DOC" file for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* NODE NUMBERS
* VIN
* | TEMP
* | | GND
* | | | TRIM
* | | | | VOUT
* | | | | | RANGE
* | | | | | |
.SUBCKT AD780A 2 3 4 5 6 8
*
* BANDGAP REFERENCE
*
I1 4 40 DC 1.21174E-3
R1 40 4 1E3 TC=7E-6
EN 10 40 42 0 1
G1 4 10 2 4 4.85668E-9
F1 4 10 POLY(2) VS1 VS2 (0,2.42834E-5,3.8E-5)
Q1 2 10 11 QT
I2 11 4 DC 12.84E-6
R2 11 3 1E3
I3 3 4 DC 0
*
* NOISE VOLTAGE GENERATOR
*
VN1 41 0 DC 2
DN1 41 42 DEN
DN2 42 43 DEN
VN2 0 43 DC 2
*
* INTERNAL OP AMP
*
G2 4 12 10 20 1.93522E-4
R3 12 4 2.5837E9
C1 12 4 6.8444E-11
D1 12 13 DX
V1 2 13 DC 1.2
*
* SECONDARY POLE @ 508 kHz
*
G3 4 14 12 4 1E-6
R4 14 4 1E6
C2 14 4 3.1831E-13
*
* OUTPUT STAGE
*
ISY 2 4 6.8282E-4
FSY 2 4 V1 -1
RSY 2 4 500E3
*
G4 4 15 14 4 25E-6
R5 15 4 40E3
Q2 4 15 16 QP
I4 2 16 DC 100E-6
Q3 4 16 18 QP
R6 18 23 15
R7 16 21 150E3
R8 2 17 34.6
Q4 17 16 19 QN
R9 21 20 6.46E3
R10 20 4 6.1E3
R11 20 5 53E3
R12 20 8 15.6E3
I5 5 4 DC 0
I6 8 4 DC 0
VS1 21 19 DC 0
VS2 23 21 DC 0
L1 21 6 1E-7
*
* OUTPUT CURRENT LIMIT
*
FSC 15 4 VSC 1
VSC 2 22 DC 0
QSC 22 2 17 QN
*
.MODEL QT NPN(IS=1.68E-16 BF=1E4)
.MODEL QN NPN(IS=1E-15 BF=1E3)
.MODEL QP PNP(IS=1E-15 BF=1E3)
.MODEL DX D(IS=1E-15)
.MODEL DEN D(IS=1E-12 RS=2.425E+05 AF=1 KF=6.969E-16)
.ENDS AD780A
C101 0 U100V- 1uF
C102 U100V+ 0 1uF
XU100 0 VU100in- U100V+ U100V- VU1bias+ OP177A
* OP177A SPICE Macro-model 12/90, Rev. B
* JCB / PMI
*
* Revision History:
* REV. B
* Re-ordered subcircuit call out nodes to put the
* output node last.
* Changed Ios from 1E-9 to 0.5E-9
* Added F1 and F2 to fix short circuit current limit.
*
*
* This version of the OP-177 model simulates the worst case
* parameters of the 'A' grade. The worst case parameters
* used correspond to those in the data book.
*
*
* Copyright 1990 by Analog Devices, Inc.
*
* Refer to "README.DOC" file for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
*
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT OP177A 1 2 99 50 39
*
* INPUT STAGE & POLE AT 6 MHZ
*
R1 2 3 5E11
R2 1 3 5E11
R3 5 97 0.0606
R4 6 97 0.0606
CIN 1 2 4E-12
C2 5 6 218.9E-9
I1 4 51 1
IOS 1 2 0.5E-9
EOS 9 10 POLY(1) 30 33 10E-6 1
Q1 5 2 7 QX
Q2 6 9 8 QX
R5 7 4 0.009
R6 8 4 0.009
D1 2 1 DX
D2 1 2 DX
EN 10 1 12 0 1
GN1 0 2 15 0 1
GN2 0 1 18 0 1
*
EREF 98 0 33 0 1
EPLUS 97 0 99 0 1
ENEG 51 0 50 0 1
*
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
*
DN1 11 12 DEN
DN2 12 13 DEN
VN1 11 0 DC 2
VN2 0 13 DC 2
*
* CURRENT NOISE SOURCE WITH FLICKER NOISE
*
DN3 14 15 DIN
DN4 15 16 DIN
VN3 14 0 DC 2
VN4 0 16 DC 2
*
* SECOND CURRENT NOISE SOURCE
*
DN5 17 18 DIN
DN6 18 19 DIN
VN5 17 0 DC 2
VN6 0 19 DC 2
*
* FIRST GAIN STAGE
*
R7 20 98 1
G1 98 20 5 6 119.8
D3 20 21 DX
D4 22 20 DX
E1 97 21 POLY(1) 97 33 -2.4 1
E2 22 51 POLY(1) 33 51 -2.4 1
*
* GAIN STAGE & DOMINANT POLE AT 0.127 HZ
*
R8 23 98 1.253E9
C3 23 98 1E-9
G2 98 23 20 33 33.3E-6
V1 97 24 1.8
V2 25 51 1.8
D5 23 24 DX
D6 25 23 DX
*
* NEGATIVE ZERO AT -4MHZ
*
R9 26 27 1
C4 26 27 -39.75E-9
R10 27 98 1E-6
E3 26 98 23 33 1E6
*
* COMMON-MODE GAIN NETWORK WITH ZERO AT 63 HZ
*
R13 30 31 1
L2 31 98 2.52E-3
G4 98 30 3 33 0.316E-6
D7 30 97 DX
D8 51 30 DX
*
* POLE AT 2 MHZ
*
R14 32 98 1
C5 32 98 79.5E-9
G5 98 32 27 33 1
*
* OUTPUT STAGE
*
R15 33 97 1
R16 33 51 1
GSY 99 50 POLY(1) 99 50 0.725E-3 0.0425E-3
F1 34 0 V3 1
F2 0 34 V4 1
R17 34 99 400
R18 34 50 400
L3 34 39 2E-7
G6 37 50 32 34 2.5E-3
G7 38 50 34 32 2.5E-3
G8 34 99 99 32 2.5E-3
G9 50 34 32 50 2.5E-3
V3 35 34 6.8
V4 34 36 4.4
D9 32 35 DX
D10 36 32 DX
D11 99 37 DX
D12 99 38 DX
D13 50 37 DY
D14 50 38 DY
*
* MODELS USED
*
.MODEL QX NPN(BF=333.3E6)
.MODEL DX D(IS=1E-15)
.MODEL DY D(IS=1E-15 BV=50)
.MODEL DEN D(IS=1E-12, RS=14.61K, KF=2E-17, AF=1)
.MODEL DIN D(IS=1E-12, RS=7.55E-6, KF=3E-15, AF=1)
.ENDS
R102 U100V+ +5V 22
R101 -5V U100V- 22
R98 0 VU2bias+ 1K
R99 0 VU1bias+ 1K
C95 VU2bias+ 0 100pF
* C96 0 5 1uF
* C97 4 0 1uF
Cphotodiode 0 Vinput 0.9pF
C99 0 VU1bias+ 100pF
R25 Vout2 2 250
C24 Vout1 VU1in- 1pF
R24 VU1in- 1 150
* C21 0 3 1uF
Cc Vout2 VU2in- 1pF
Rc Vout1 VU2in- 10
RL 0 Vout2 50
.TEMP 0 25 50 75 100
C12 2 0 1.5pF
C11 0 V2- .01uF
C10 V2+ 0 .01uF
R13 +5V V2+ 5
R12 V2- -5V 5
R26 2 VU2in- 150
R11 Vout2 VU2in- 180
XU2 VU2bias+ VU2in- V2+ V2- Vout2 AD8009an
XU1 VU1bias+ VU1in- V1+ V1- Vout1 AD8009an
***** AD8009 SPICE model Rev B SMR/ADI 8-21-97
* Copyright 1997 by Analog Devices, Inc.
* Refer to "README.DOC" file for License Statement. Use of this model
* indicates your acceptance with the terms and provisions in the License Statement.
* rev B of this model corrects a problem in the output stage that would not
* correctly reflect the output current to the voltage supplies
* This model will give typical performance characteristics
* for the following parameters;
* closed loop gain and phase vs bandwidth
* output current and voltage limiting
* offset voltage (is static, will not vary with vcm)
* ibias (again, is static, will not vary with vcm)
* slew rate and step response performance
* (slew rate is based on 10-90% of step response)
* current on output will be reflected to the supplies
* vnoise, referred to the input
* inoise, referred to the input
* distortion is not characterized
* Node assignments
* non-inverting input
* | inverting input
* | | positive supply
* | | | negative supply
* | | | | output
* | | | | |
.SUBCKT AD8009an 1 2 99 50 28
* input stage *
q1 50 3 5 qp1
q2 99 5 4 qn1
q3 99 3 6 qn2
q4 50 6 4 qp2
i1 99 5 1.625e-3
i2 6 50 1.625e-3
cin1 1 98 2.6e-12
cin2 2 98 1e-12
v1 4 2 0
* input error sources *
eos 3 1 poly(1) 20 98 2e-3 1
fbn 2 98 poly(1) vnoise3 50e-6 1e-3
fbp 1 98 poly(1) vnoise3 50e-6 1e-3
* slew limiting stage *
fsl 98 16 v1 1
dsl1 98 16 d1
dsl2 16 98 d1
dsl3 16 17 d1
dsl4 17 16 d1
rsl 17 18 0.22
vsl 18 98 0
* gain stage *
f1 98 7 vsl 2
rgain 7 98 2.5e5
cgain 7 98 1.25e-12
dcl1 7 8 d1
dcl2 9 7 d1
vcl1 99 8 1.83
vcl2 9 50 1.83
gcm 98 7 poly(2) 98 0 30 0 0 1e-5 1e-5
* second pole *
epole 14 98 7 98 1
rpole 14 15 1
cpole 15 98 2e-10
* reference stage *
eref 98 0 poly(2) 99 0 50 0 0 0.5 0.5
ecmref 30 0 poly(2) 1 0 2 0 0 0.5 0.5
* vnoise stage *
rnoise1 19 98 4.6e-3
vnoise1 19 98 0
vnoise2 21 98 0.53
dnoise1 21 19 dn
fnoise1 20 98 vnoise1 1
rnoise2 20 98 1
* inoise stage *
rnoise3 22 98 8.18e-6
vnoise3 22 98 0
vnoise4 24 98 0.575
dnoise2 24 22 dn
fnoise2 23 98 vnoise3 1
rnoise4 23 98 1
* buffer stage *
gbuf 98 13 15 98 1e-2
rbuf 98 13 1e2
* output current reflected to supplies *
fcurr 98 40 voc 1
vcur1 26 98 0
vcur2 98 27 0
dcur1 40 26 d1
dcur2 27 40 d1
* output stage *
vo1 99 90 0
vo2 91 50 0
fout1 0 99 poly(2) vo1 vcur1 -9.27e-3 1 -1
fout2 50 0 poly(2) vo2 vcur2 -9.27e-3 1 -1
gout1 90 10 13 99 0.5
gout2 91 10 13 50 0.5
rout1 10 90 2
rout2 10 91 2
voc 10 28 0
rout3 28 98 1e6
dcl3 13 11 d1
dcl4 12 13 d1
vcl3 11 10 -0.445
vcl4 10 12 -0.445
.model qp1 pnp()
.model qp2 pnp()
.model qn1 npn()
.model qn2 npn()
.model d1 d()
.model dn d(af=1 kf=1e-8)
.ends
R6 1 Vout1 250
C3 1 0 1.5pF
V3 VU1in- Vinput DC 0V
* .INCLUDE /home/sdb/OpticalReceiver/Simulation.cmd
R5 -5V Vout1 1K
I1 0 Vinput AC 1 PWL (0ns 0mA 1nS 0mA 1.01nS 1mA 10nS 1mA 10.01nS 0mA 20nS 0mA 20.01nS .1mA 30nS .1mA 30.01nS 0mA)
R4 V1- -5V 5
C2 0 V1- .01uF
V2 -5V 0 DC -5V
R2 VU1in- Vout1 180
V1 +5V 0 DC 5V
C1 V1+ 0 .01uF
R1 +5V V1+ 5
* When run, this SPICE file should output a square waveform
* with a little overshoot
.tran 0.05ns 40ns
.plot Vout2
.control
codemodel analog.lib
run
.endc
.END

View File

@ -0,0 +1,127 @@
.MODEL M_NPN nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since, we are only simulating half of a device, we double the unit width
+ * 1.0 um emitter length
+ options defw=2.0u
+ output dc.debug stat
+
+ *x.mesh w=2.5 n=5
+ x.mesh w=2.0 h.e=0.05 h.m=0.2 r=1.5
+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.10 h.e=0.002 h.m=0.01 r=1.5
+ y.mesh w=0.15 h.s=0.002 h.m=0.01 r=1.5
+ y.mesh w=0.35 h.s=0.01 h.m=0.2 r=1.5
+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss n.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss p.type conc=1e19 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.094 lat.rotate
+ doping unif n.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss n.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
.MODEL M_NMOS_1 numos
+ output dc.debug stat
+ title 1.0um NMOS Device
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1.0 x.h=2.0 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=2.5 x.h=3.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1.0 x.h=2.0 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=3.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=3.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=3.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1.0 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=2.0 x.h=3.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=2.05 x.h=3.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob fieldmob surfmob srh auger conctau bgn ^aval
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_1 numos
+ title 1.0um PMOS Device
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1.0 x.h=2.0 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=2.5 x.h=3.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1.0 x.h=2.0 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=3.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=3.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=3.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1.0 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=2.0 x.h=3.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=2.05 x.h=3.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob fieldmob surfmob srh auger conctau bgn ^aval
+ method ac=direct itlim=10 onec

View File

@ -0,0 +1,26 @@
BiCMOS Pulldown Circuit
VSS 2 0 0v
VIN 3 2 0v (PULSE 0.0v 4.2v 0ns 1ns 1ns 9ns 20ns)
M1 8 3 5 11 M_NMOS_1 W=4u L=1u
VD 4 8 0v
VBK 11 2 0v
Q1 10 7 9 M_NPN AREA=8
VC 4 10 0v
VB 5 7 0v
VE 9 2 0v
CL 4 6 1pF
VL 6 2 0v
.IC V(10)=5.0v V(7)=0.0v
.TRAN 0.1ns 5ns 0ns 0.1ns
.PLOT TRAN I(VIN)
.include bicmos.lib
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,34 @@
Astable multivibrator
vin 5 0 dc 0 pulse(0 5 0 1us 1us 100us 100us)
vcc 6 0 5.0
rc1 6 1 1k
rc2 6 2 1k
rb1 6 3 30k
rb2 5 4 30k
c1 1 4 150pf
c2 2 3 150pf
q1 1 3 0 qmod area = 100p
q2 2 4 0 qmod area = 100p
.option acct bypass=1
.tran 0.05us 8us 0us 0.05us
.print tran v(1) v(2) v(3) v(4)
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.end

View File

@ -0,0 +1,33 @@
Colpitt's Oscillator Circuit
r1 1 0 1
q1 2 1 3 qmod area = 100p
vcc 4 0 5
rl 4 2 750
c1 2 3 500p
c2 4 3 4500p
l1 4 2 5uH
re 3 6 4.65k
vee 6 0 dc -15 pwl 0 -15 1e-9 -10
.tran 30n 12u
.print tran v(2)
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.options acct bypass=1
.end

View File

@ -0,0 +1,57 @@
Emitter Coupled Pair
VCC 1 0 5v
VEE 2 0 0v
RCP 1 11 10k
RCN 1 21 10k
VBBP 12 0 3v AC 1
VBBN 22 0 3v
IEE 13 2 0.1mA
Q1 11 12 13 M_NPN AREA=8
Q2 21 22 13 M_NPN AREA=8
.DC VBBP 2.75v 3.25001v 10mv
.PRINT V(21) V(11)
.MODEL M_NPN nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since, we are only simulating half of a device, we double the unit width
+ * 1.0 um emitter length
+ options defw=2.0u
+
+ *x.mesh w=2.5 n=5
+ x.mesh w=2.0 h.e=0.05 h.m=0.2 r=1.5
+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.10 h.e=0.002 h.m=0.01 r=1.5
+ y.mesh w=0.15 h.s=0.002 h.m=0.01 r=1.5
+ y.mesh w=0.35 h.s=0.01 h.m=0.2 r=1.5
+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss n.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss p.type conc=1e19 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.094 lat.rotate
+ doping unif n.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss n.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,38 @@
4 Stage RTL Inverter Chain
vin 1 0 dc 0v pwl 0ns 0v 1ns 5v
vcc 12 0 dc 5.0v
rc1 12 3 2.5k
rb1 1 2 8k
q1 3 2 0 qmod area = 100p
rb2 3 4 8k
rc2 12 5 2.5k
q2 5 4 0 qmod area = 100p
rb3 5 6 8k
rc3 12 7 2.5k
q3 7 6 0 qmod area = 100p
rb4 7 8 8k
rc4 12 9 2.5k
q4 9 8 0 qmod area = 100p
.print tran v(3) v(5) v(9)
.tran 1e-9 10e-9
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.option acct bypass=1
.end

View File

@ -0,0 +1,74 @@
Motorola MECL III ECL gate
*.dc vin -2.0 0 0.02
.tran 0.2ns 20ns
vee 22 0 -6.0
vin 1 0 pulse -0.8 -1.8 0.2ns 0.2ns 0.2ns 10ns 20ns
rs 1 2 50
q1 4 2 6 qmod area = 100p
q2 4 3 6 qmod area = 100p
q3 5 7 6 qmod area = 100p
q4 0 8 7 qmod area = 100p
d1 8 9 dmod
d2 9 10 dmod
rp1 3 22 50k
rc1 0 4 100
rc2 0 5 112
re 6 22 380
r1 7 22 2k
r2 0 8 350
r3 10 22 1958
q5 0 5 11 qmod area = 100p
q6 0 4 12 qmod area = 100p
rp2 11 22 560
rp3 12 22 560
q7 13 12 15 qmod area = 100p
q8 14 16 15 qmod area = 100p
re2 15 22 380
rc3 0 13 100
rc4 0 14 112
q9 0 17 16 qmod area = 100p
r4 16 22 2k
r5 0 17 350
d3 17 18 dmod
d4 18 19 dmod
r6 19 22 1958
q10 0 14 20 qmod area = 100p
q11 0 13 21 qmod area = 100p
rp4 20 22 560
rp5 21 22 560
.model dmod d rs=40 tt=0.1ns cjo=0.9pf n=1 is=1e-14 eg=1.11 vj=0.8 m=0.5
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=10 loc=0.9
+ x.mesh node=20 loc=1.1
+ x.mesh node=30 loc=1.4
+ x.mesh node=40 loc=1.6
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.options acct bypass=1
.print tran v(12) v(21)
.end

View File

@ -0,0 +1,71 @@
**
* Numerical models for a
* polysilicon emitter complementary bipolar process.
* The default device size is 1um by 10um (LxW)
**
.model M_NPN nbjt level=1
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.15 base.area=0.1 base.length=1.0 defa=10p
+ x.mesh loc=-0.2 n=1
+ x.mesh loc=0.0 n=51
+ x.mesh wid=0.15 h.e=0.0001 h.m=.004 r=1.2
+ x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2
+ domain num=1 material=1 x.l=0.0
+ domain num=2 material=2 x.h=0.0
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss n.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss p.type conc=5e18 x.l=-0.2 x.h=0.0 char.len=0.100
+ doping unif n.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss n.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob ^aval
+ method devtol=1e-12 ac=direct itlim=15
.model M_NPSUB numd level=1
+ title One-Dimensional Numerical Collector-Substrate Diode
+ options defa=10p
+ x.mesh loc=1.3 n=1
+ x.mesh loc=2.0 n=101
+ domain num=1 material=1
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ doping gauss n.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ doping unif p.type conc=1e15 x.l=0.0 x.h=2.0
+ models bgn srh auger conctau concmob fieldmob ^aval
+ method devtol=1e-12 itlim=10
.model M_PNP nbjt level=1
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.2 base.area=0.1 base.length=1.0 defa=10p
+ x.mesh loc=-0.2 n=1
+ x.mesh loc=0.0 n=51
+ x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2
+ x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2
+ domain num=1 material=1 x.l=0.0
+ domain num=2 material=2 x.h=0.0
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss p.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss n.type conc=5e17 x.l=-0.2 x.h=0.0 char.len=0.200
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss p.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob ^aval
+ method devtol=1e-12 ac=direct itlim=15
.model M_PNSUB numd level=1
+ title One-Dimensional Numerical Collector-Substrate Diode
+ options defa=10p
+ x.mesh loc=1.3 n=1
+ x.mesh loc=2.0 n=101
+ domain num=1 material=1
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ doping gauss p.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ doping unif n.type conc=1e15 x.l=0.0 x.h=2.0
+ models bgn srh auger conctau concmob fieldmob ^aval
+ method devtol=1e-12 itlim=10

16
examples/cider/bjt/pz.cir Normal file
View File

@ -0,0 +1,16 @@
PZ Analysis of a Common Emitter Amplifier
Vcc 1 0 5v
Vee 2 0 0v
Vin 3 0 0.7838 AC 1
RS 3 4 1K
Q1 5 4 2 M_NPN AREA=4 SAVE
RL 1 5 2.5k
CL 5 0 0.1pF
.INCLUDE pebjt.lib
.PZ 3 0 5 0 vol pz
.END

View File

@ -0,0 +1,29 @@
RTL inverter
vin 1 0 dc 1 pwl 0 4 1ns 0
vcc 12 0 dc 5.0
rc1 12 3 2.5k
rb1 1 2 8k
q1 3 2 0 qmod area = 100p
.option acct bypass=1
.tran 0.5n 5n
.print tran v(2) v(3)
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.end

View File

@ -0,0 +1,45 @@
Voltage controlled oscillator
rc1 7 5 1k
rc2 7 6 1k
q5 7 7 5 qmod area = 100p
q6 7 7 6 qmod area = 100p
q3 7 5 2 qmod area = 100p
q4 7 6 1 qmod area = 100p
ib1 2 0 .5ma
ib2 1 0 .5ma
cb1 2 0 1pf
cb2 1 0 1pf
q1 5 1 3 qmod area = 100p
q2 6 2 4 qmod area = 100p
c1 3 4 .1uf
is1 3 0 dc 2.5ma pulse 2.5ma 0.5ma 0 1us 1us 50ms
is2 4 0 1ma
vcc 7 0 10
.model qmod nbjt level=1
+ x.mesh node=1 loc=0.0
+ x.mesh node=61 loc=3.0
+ region num=1 material=1
+ material num=1 silicon nbgnn=1e17 nbgnp=1e17
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+ doping unif n.type conc=1e17 x.l=0.0 x.h=1.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.5
+ doping unif n.type conc=1e15 x.l=0.0 x.h=3.0
+ models bgnw srh conctau auger concmob fieldmob
+ options base.length=1.0 base.depth=1.25
.option acct bypass=1
.tran 3us 600us 0 3us
.print tran v(4)
.end

View File

@ -0,0 +1,35 @@
One-Dimensional Diode Simulation
* Several simulations are performed by this file.
* They are:
* 1. An operating point at 0.7v forward bias.
* 2. An ac analysis at 0.7v forward bias.
* 3. The forward and reverse bias characteristics from -3v to 2v.
Vpp 1 0 0.7v (PWL 0ns 3.0v 0.01ns -6.0v) (AC 1v)
Vnn 2 0 0v
D1 1 2 M_PN AREA=100
.model M_PN numd level=1
+ ***************************************
+ *** One-Dimensional Numerical Diode ***
+ ***************************************
+ options defa=1p
+ x.mesh loc=0.0 n=1
+ x.mesh loc=1.3 n=201
+ domain num=1 material=1
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ doping gauss p.type conc=1e20 x.l=0.0 x.h=0.0 char.l=0.100
+ doping unif n.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss n.type conc=5e19 x.l=1.3 x.h=1.3 char.l=0.100
+ models bgn aval srh auger conctau concmob fieldmob
+ method ac=direct
.option acct bypass=0 abstol=1e-18 itl2=100
.op
.ac dec 10 100kHz 10gHz
.dc Vpp -3.0v 2.0001v 50mv
.print i(Vpp)
.END

View File

@ -0,0 +1,31 @@
Diode Reverse Recovery
* This file simulates reverse recovery of a diode as it switched from an
* on to off state.
Vpp 1 0 0.7v (PWL 0ns 3.0v 0.1ns 3.0v 0.11ns -6.0v) (AC 1v)
Vnn 2 0 0v
R1 1 3 1k
D1 3 2 M_PN area=100
.MODEL M_PN numd level=1
+ ***************************************
+ *** One-Dimensional Numerical Diode ***
+ ***************************************
+ options defa=1p
+ x.mesh loc=0.0 n=1
+ x.mesh loc=1.3 n=201
+ domain num=1 material=1
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ doping gauss p.type conc=3e20 x.l=0.0 x.h=0.0 char.l=0.100
+ doping unif n.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss n.type conc=5e19 x.l=1.3 x.h=1.3 char.l=0.100
+ models bgn aval srh auger conctau concmob fieldmob
+ method ac=direct
.option acct bypass=1 abstol=1e-15 itl2=100
.tran 0.001ns 1.0ns
.print i(Vpp)
.END

View File

@ -0,0 +1,42 @@
TWO-DIMENSIONAL PIN-DIODE CIRCUIT
VIN 1 0 0.0v (PWL 0ns 0.8v 1ns -50.0v)
L1 1 2 0.5uH
VD 2 3 0.0v
D1 3 0 M_PIN AREA=200 IC.FILE="OP.0.d1"
VRC 2 4 0.0v
R1 4 5 100
C1 5 0 1.0nF
.MODEL M_PIN NUMD LEVEL=2
+ options defw=1000u
+ x.mesh n=1 l=0.0
+ x.mesh n=2 l=0.2
+ x.mesh n=4 l=0.4
+ x.mesh n=8 l=0.6
+ x.mesh n=13 l=1.0
+
+ y.mesh n=1 l=0.0
+ y.mesh n=9 l=4.0
+ y.mesh n=24 l=10.0
+ y.mesh n=29 l=15.0
+ y.mesh n=34 l=20.0
+
+ domain num=1 material=1
+ material num=1 silicon tn=20ns tp=20ns
+
+ electrode num=1 x.l=0.6 x.h=1.0 y.h=0.0
+ electrode num=2 y.l=20.0
+
+ doping gauss p.type conc=1.0e20 char.len=1.076 x.l=0.75 x.h=1.1 y.h=0.0
+ + lat.rotate ratio=0.1
+ doping unif n.type conc=1.0e14
+ doping gauss n.type conc=1.0e20 char.len=1.614 x.l=-0.1 x.h=1.1 y.l=20.0
+
+ models bgn srh auger conctau concmob fieldmob
.OPTION ACCT BYPASS=1
.TRAN 1NS 100NS
.PRINT TRAN v(3) I(VIN)
.END

View File

@ -0,0 +1,36 @@
Two-dimensional Junction Field-Effect Transistor (JFET)
VDD 1 0 0.5V
VGG 2 0 -1.0v AC 1V
VSS 3 0 0.0V
QJ1 1 2 3 M_NJF AREA=1
.MODEL M_NJF NBJT LEVEL=2
+ options jfet defw=10.0um
+ output dc.debug phin phip equ.psi vac.psi
+ x.mesh w=0.2 h.e=0.001 r=1.8
+ x.mesh w=0.8 h.s=0.001 h.m=0.1 r=2.0
+ x.mesh w=0.8 h.e=0.001 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.s=0.001 r=1.8
+ y.mesh w=0.2 h.e=0.01 r=1.8
+ y.mesh w=0.8 h.s=0.01 h.m=0.1 r=1.8
+
+ domain num=1 mat=1
+ material num=1 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=0.0 y.h=1.0
+ elec num=2 x.l=0.5 x.h=1.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=2.0 y.l=0.0 y.h=1.0
+
+ doping unif n.type conc=3.0e15
+ doping unif p.type conc=2.0e17 x.l=0.2 x.h=1.8 y.h=0.2
+
+ models bgn srh auger conctau concmob fieldmob ^aval
.option acct bypass=1 temp=27
*.op
.dc vgg 0.0 -2.0001 -0.1
*.ac dec 10 1k 100g
.print i(vnn)
.end

View File

@ -0,0 +1,59 @@
NMOS Enhancement-Load Bootstrap Inverter
Vdd 1 0 5.0v
Vss 2 0 0.0v
Vin 5 0 0.0v PWL (0.0ns 5.0v) (1ns 0.0v) (10ns 0.0v) (11ns 5.0v)
+ (20ns 5.0v) (21ns 0.0v) (30ns 0.0v) (31ns 5.0v)
M1 1 1 3 2 M_NMOS w=5u
M2 1 3 4 4 M_NMOS w=5u
M3 4 5 2 2 M_NMOS w=5u
CL 4 0 0.1pf
CB 3 4 0.1pf
.model M_NMOS numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 init elec major
+ mobility material=1 init elec minor
+ mobility material=1 init hole major
+ mobility material=1 init hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif p.type conc=2.5e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif n.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif n.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob
+ method ac=direct onec
.tran 0.2ns 40ns
.print v(4)
.options acct bypass=1 method=gear
.end

View File

@ -0,0 +1,57 @@
MOS charge pump
vin 4 0 dc 0v pulse 0 5 15ns 5ns 5ns 50ns 100ns
vdd 5 6 dc 0v pulse 0 5 25ns 5ns 5ns 50ns 100ns
vbb 0 7 dc 0v pulse 0 5 0ns 5ns 5ns 50ns 100ns
rd 6 2 10k
m1 5 4 3 7 mmod w=100um
vs 3 2 0
vc 2 1 0
c2 1 0 10pf
.ic v(3)=1.0
.tran 2ns 200ns
.options acct bypass=1
.print tran v(1) v(2)
.model mmod numos
+ x.mesh n=1 l=0
+ x.mesh n=3 l=0.4
+ x.mesh n=7 l=0.6
+ x.mesh n=15 l=1.4
+ x.mesh n=19 l=1.6
+ x.mesh n=21 l=2.0
+
+ y.mesh n=1 l=0
+ y.mesh n=4 l=0.015
+ y.mesh n=8 l=0.05
+ y.mesh n=12 l=0.25
+ y.mesh n=14 l=0.35
+ y.mesh n=17 l=0.5
+ y.mesh n=21 l=1.0
+
+ region num=1 material=1 y.l=0.015
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.015 x.l=0.5 x.h=1.5
+ material num=2 oxide
+
+ elec num=1 ix.l=18 ix.h=21 iy.l=4 iy.h=4
+ elec num=2 ix.l=5 ix.h=17 iy.l=1 iy.h=1
+ elec num=3 ix.l=1 ix.h=4 iy.l=4 iy.h=4
+ elec num=4 ix.l=1 ix.h=21 iy.l=21 iy.h=21
+
+ doping unif n.type conc=1e18 x.l=0.0 x.h=0.5 y.l=0.015 y.h=0.25
+ doping unif n.type conc=1e18 x.l=1.5 x.h=2.0 y.l=0.015 y.h=0.25
+ doping unif p.type conc=1e15 x.l=0.0 x.h=2.0 y.l=0.015 y.h=1.0
+ doping unif p.type conc=1.3e17 x.l=0.5 x.h=1.5 y.l=0.015 y.h=0.05
+
+ models concmob fieldmob
+ method onec
.end

View File

@ -0,0 +1,115 @@
CMOS Inverter
Vdd 1 0 5.0v
Vss 2 0 0.0v
X1 1 2 3 4 INV
Vin 3 0 2.5v
.SUBCKT INV 1 2 3 4
* Vdd Vss Vin Vout
M1 14 13 15 16 M_PMOS w=6.0u
M2 24 23 25 26 M_NMOS w=3.0u
Vgp 3 13 0.0v
Vdp 4 14 0.0v
Vsp 1 15 0.0v
Vbp 1 16 0.0v
Vgn 3 23 0.0v
Vdn 4 24 0.0v
Vsn 2 25 0.0v
Vbn 2 26 0.0v
.ENDS INV
.model M_NMOS numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif p.type conc=2.5e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif n.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif n.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob bgn srh conctau
+ method ac=direct onec
.model M_PMOS numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif n.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=3e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif p.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif p.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob bgn srh conctau
+ method ac=direct onec
*.tran 0.1ns 5ns
*.op
.dc Vin 0.0v 5.001v 0.05v
.print v(4)
.options acct bypass=1 method=gear
.end

View File

@ -0,0 +1,55 @@
Resistive load NMOS inverter
vin 1 0 pwl 0 0.0 2ns 5
vdd 3 0 dc 5.0
rd 3 2 2.5k
m1 2 1 4 5 mmod w=10um
cl 2 0 2pf
vb 5 0 0
vs 4 0 0
.model mmod numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif p.type conc=2.5e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif n.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif n.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob
+ method ac=direct onec
.tran 0.2ns 30ns
.options acct bypass=1
.print tran v(1) v(2)
.end

View File

@ -0,0 +1,59 @@
Turnoff transient of pass transistor
M1 11 2 3 4 mmod w=20um
Cs 1 0 6.0pF
Cl 3 0 6.0pF
R1 3 6 200k
Vin 6 0 dc 0
Vdrn 1 11 dc 0
Vg 2 0 dc 5 pwl 0 5 0.1n 0 1 0
Vb 4 0 dc 0.0
.tran 0.05ns 0.2ns 0.0ns 0.05ns
.print tran v(1) i(Vdrn)
.ic v(1)=0 v(3)=0
.option acct bypass=1
.model mmod numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif p.type conc=2.5e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif n.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif n.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob
+ method ac=direct onec
.end

View File

@ -0,0 +1,122 @@
CMOS Ring Oscillator
Vdd 1 0 5.0v
Vss 2 0 0.0v
X1 1 2 3 4 INV
X2 1 2 4 5 INV
X3 1 2 5 3 INV
*X4 1 2 6 7 INV
*X5 1 2 7 8 INV
*X6 1 2 8 9 INV
*X7 1 2 9 3 INV
.IC V(3)=0.0v V(4)=2.5v V(5)=5.0v
* V(6)=0.0v V(7)=5.0v V(8)=0.0v V(9)=5.0v
Vin 3 0 2.5v
.SUBCKT INV 1 2 3 4
* Vdd Vss Vin Vout
M1 14 13 15 16 M_PMOS w=6.0u
M2 24 23 25 26 M_NMOS w=3.0u
Vgp 3 13 0.0v
Vdp 4 14 0.0v
Vsp 1 15 0.0v
Vbp 1 16 0.0v
Vgn 3 23 0.0v
Vdn 4 24 0.0v
Vsn 2 25 0.0v
Vbn 2 26 0.0v
.ENDS INV
.model M_NMOS numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif p.type conc=2.5e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif n.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif n.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob bgn srh conctau
+ method ac=direct onec
.model M_PMOS numos
+ x.mesh l=0.0 n=1
+ x.mesh l=0.6 n=4
+ x.mesh l=0.7 n=5
+ x.mesh l=1.0 n=7
+ x.mesh l=1.2 n=11
+ x.mesh l=3.2 n=21
+ x.mesh l=3.4 n=25
+ x.mesh l=3.7 n=27
+ x.mesh l=3.8 n=28
+ x.mesh l=4.4 n=31
+
+ y.mesh l=-.05 n=1
+ y.mesh l=0.0 n=5
+ y.mesh l=.05 n=9
+ y.mesh l=0.3 n=14
+ y.mesh l=2.0 n=19
+
+ region num=1 material=1 y.l=0.0
+ material num=1 silicon
+ mobility material=1 concmod=sg fieldmod=sg
+ mobility material=1 elec major
+ mobility material=1 elec minor
+ mobility material=1 hole major
+ mobility material=1 hole minor
+
+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7
+ material num=2 oxide
+
+ elec num=1 x.l=3.8 x.h=4.4 y.l=0.0 y.h=0.0
+ elec num=2 x.l=0.7 x.h=3.7 iy.l=1 iy.h=1
+ elec num=3 x.l=0.0 x.h=0.6 y.l=0.0 y.h=0.0
+ elec num=4 x.l=0.0 x.h=4.4 y.l=2.0 y.h=2.0
+
+ doping unif n.type conc=1e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=2.0
+ doping unif p.type conc=3e16 x.l=0.0 x.h=4.4 y.l=0.0 y.h=0.05
+ doping unif p.type conc=1e20 x.l=0.0 x.h=1.1 y.l=0.0 y.h=0.2
+ doping unif p.type conc=1e20 x.l=3.3 x.h=4.4 y.l=0.0 y.h=0.2
+
+ models concmob fieldmob bgn srh conctau
+ method ac=direct onec
.tran 0.1ns 5ns
.print v(4)
.options acct bypass=1 method=gear
.end

View File

@ -0,0 +1,931 @@
**
* BICMOS.LIB: Library of models used in the 1.0 um CBiCMOS process
* Contains CIDER input descriptions as well as matching
* SPICE models for some of the CIDER models.
**
**
* One-dimensional models for a
* polysilicon emitter complementary bipolar process.
* The default device size is 1um by 1um (LxW)
**
.model M_NPN1D nbjt level=1
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.15 base.area=0.1 base.length=0.5 defa=1p
+ x.mesh loc=-0.2 n=1
+ x.mesh loc=0.0 n=51
+ x.mesh wid=0.15 h.e=0.0001 h.m=.004 r=1.2
+ x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2
+ domain num=1 material=1 x.l=0.0
+ domain num=2 material=2 x.h=0.0
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss n.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss p.type conc=5e18 x.l=-0.2 x.h=0.0 char.len=0.100
+ doping unif n.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss n.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob
+ method devtol=1e-12 ac=direct itlim=15
.model M_PNP1D nbjt level=1
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.2 base.area=0.1 base.length=0.5 defa=1p
+ x.mesh loc=-0.2 n=1
+ x.mesh loc=0.0 n=51
+ x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2
+ x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2
+ domain num=1 material=1 x.l=0.0
+ domain num=2 material=2 x.h=0.0
+ material num=1 silicon
+ mobility mat=1 concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss p.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss n.type conc=5e17 x.l=-0.2 x.h=0.0 char.len=0.200
+ doping unif p.type conc=1e16 x.l=0.0 x.h=1.3
+ doping gauss p.type conc=5e19 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob
+ method devtol=1e-12 ac=direct itlim=15
**
* Two-dimensional models for a
* polysilicon emitter complementary bipolar process.
* The default device size is 1um by 1um (LxW)
**
.MODEL M_NPNS nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter. Use a small mesh for this model.
+ options defw=2.0u
+ output stat
+
+ x.mesh w=2.0 h.e=0.02 h.m=0.5 r=2.0
+ x.mesh w=0.5 h.s=0.02 h.m=0.2 r=2.0
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.10 h.e=0.004 h.m=0.05 r=2.5
+ y.mesh w=0.15 h.s=0.004 h.m=0.02 r=2.5
+ y.mesh w=1.05 h.s=0.02 h.m=0.1 r=2.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss n.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss p.type conc=5e18 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate
+ doping gauss p.type conc=1e20 x.l=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate ratio=0.7
+ doping unif n.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss n.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
.MODEL M_NPN nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter length. Uses a finer mesh in the X direction.
+ options defw=2.0u
+ output stat
+
+ x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0
+ x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0
+ x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5
+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.10 h.e=0.003 h.m=0.01 r=1.5
+ y.mesh w=0.15 h.s=0.003 h.m=0.02 r=1.5
+ y.mesh w=0.35 h.s=0.02 h.m=0.2 r=1.5
+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss n.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss p.type conc=5e18 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate
+ doping gauss p.type conc=1e20 x.l=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate ratio=0.7
+ doping unif n.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss n.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
.MODEL M_PNPS nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter length. Use a small mesh for this model.
+ options defw=2.0u
+ output stat
+
+ x.mesh w=2.0 h.e=0.02 h.m=0.5 r=2.0
+ x.mesh w=0.5 h.s=0.02 h.m=0.2 r=2.0
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.12 h.e=0.004 h.m=0.05 r=2.5
+ y.mesh w=0.28 h.s=0.004 h.m=0.02 r=2.5
+ y.mesh w=1.05 h.s=0.02 h.m=0.1 r=2.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss p.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss n.type conc=5e17 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.200 lat.rotate
+ doping gauss n.type conc=1e20 x.l=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate ratio=0.7
+ doping unif p.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss p.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
.MODEL M_PNP nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter length. Uses a finer mesh in the X direction.
+ options defw=2.0u
+ output stat
+
+ x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0
+ x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0
+ x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5
+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5
+
+ y.mesh l=-0.2 n=1
+ y.mesh l= 0.0 n=5
+ y.mesh w=0.12 h.e=0.003 h.m=0.01 r=1.5
+ y.mesh w=0.28 h.s=0.003 h.m=0.02 r=1.5
+ y.mesh w=0.20 h.s=0.02 h.m=0.2 r=1.5
+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+
+ domain num=1 material=1 x.l=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.l=0.0
+ material num=1 polysilicon
+ material num=2 oxide
+ material num=3 silicon
+
+ elec num=1 x.l=0.0 x.h=0.0 y.l=1.1 y.h=1.3
+ elec num=2 x.l=0.0 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=3 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+
+ doping gauss p.type conc=3e20 x.l=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.l=0.047 lat.rotate
+ doping gauss n.type conc=5e17 x.l=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.l=0.200 lat.rotate
+ doping gauss n.type conc=1e20 x.l=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.l=0.100 lat.rotate ratio=0.7
+ doping unif p.type conc=1e16 x.l=0.0 x.h=5.0 y.l=0.0 y.h=1.3
+ doping gauss p.type conc=5e19 x.l=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.l=0.100 lat.rotate
+
+ method ac=direct itlim=10
+ models bgn srh auger conctau concmob fieldmob
**
* Two-dimensional models for a
* complementary MOS process.
* Device models for 1um, 2um, 3um, 4um, 5um, 10um and 50um are provided.
**
.MODEL M_NMOS_1 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=2 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=2.5 x.h=3.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=2 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=3.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=3.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=3.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=2 x.h=3.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=2.05 x.h=3.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_2 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0
+ x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=3 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=3.5 x.h=4.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=3 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=4.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=4.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=4.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=3 x.h=4.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=3.05 x.h=4.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_3 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.4 h.s=0.005 h.m=0.3 r=2.0
+ x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=4 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=4.5 x.h=5.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=4 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=5.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=5.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=5.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=4 x.h=5.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=4.05 x.h=5.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_4 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0
+ x.mesh w=1.9 h.e=0.005 h.m=0.4 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=5 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=5.5 x.h=6.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=5 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=6.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=6.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=6.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=5 x.h=6.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=5.05 x.h=6.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_5 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0
+ x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=6 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=6.5 x.h=7.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=6 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=7.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=7.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=7.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=6 x.h=7.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=6.05 x.h=7.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_10 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=4.9 h.s=0.005 h.m=1 r=2.0
+ x.mesh w=4.9 h.e=0.005 h.m=1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=11 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=11.5 x.h=12.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=11 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=12.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=12.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=12.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=11 x.h=12.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=11.05 x.h=12.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_NMOS_50 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=24.9 h.s=0.005 h.m=5 r=2.0
+ x.mesh w=24.9 h.e=0.005 h.m=5 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=51 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=51.5 x.h=52.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=51 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=52.1 y.l=2.0 y.h=2.0
+
+ doping gauss p.type conc=1.0e17 x.l=-0.1 x.h=52.1 y.l=0.0
+ + char.l=0.30
+ doping unif p.type conc=5.0e15 x.l=-0.1 x.h=52.1 y.l=0.0 y.h=2.1
+ doping gauss n.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss n.type conc=4e17 x.l=51 x.h=52.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=1e20 x.l=51.05 x.h=52.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=4.10
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_1 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=2 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=2.5 x.h=3.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=2 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=3.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=3.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=3.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=2 x.h=3.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=2.05 x.h=3.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_2 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0
+ x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=3 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=3.5 x.h=4.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=3 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=4.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=4.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=4.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=3 x.h=4.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=3.05 x.h=4.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_3 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.4 h.s=0.005 h.m=0.3 r=2.0
+ x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=4 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=4.5 x.h=5.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=4 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=5.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=5.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=5.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=4 x.h=5.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=4.05 x.h=5.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_4 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0
+ x.mesh w=1.9 h.e=0.005 h.m=0.4 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=5 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=5.5 x.h=6.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=5 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=6.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=6.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=6.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=5 x.h=6.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=5.05 x.h=6.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_5 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0
+ x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=6 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=6.5 x.h=7.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=6 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=7.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=7.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=7.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=6 x.h=7.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=6.05 x.h=7.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_10 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=4.9 h.s=0.005 h.m=1 r=2.0
+ x.mesh w=4.9 h.e=0.005 h.m=1 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=11 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=11.5 x.h=12.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=11 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=12.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=12.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=12.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=11 x.h=12.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=11.05 x.h=12.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
.MODEL M_PMOS_50 numos
+ output stat
+
+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=24.9 h.s=0.005 h.m=5 r=2.0
+ x.mesh w=24.9 h.e=0.005 h.m=5 r=2.0
+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+
+ y.mesh l=-.0200 n=1
+ y.mesh l=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+
+ region num=1 material=1 y.h=0.0
+ region num=2 material=2 y.l=0.0
+ interface dom=2 nei=1 x.l=1 x.h=51 layer.width=0.0
+ material num=1 oxide
+ material num=2 silicon
+
+ elec num=1 x.l=51.5 x.h=52.1 y.l=0.0 y.h=0.0
+ elec num=2 x.l=1 x.h=51 iy.l=1 iy.h=1
+ elec num=3 x.l=-0.1 x.h=0.5 y.l=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=52.1 y.l=2.0 y.h=2.0
+
+ doping gauss n.type conc=1.0e17 x.l=-0.1 x.h=52.1 y.l=0.0
+ + char.l=0.30
+ doping unif n.type conc=5.0e15 x.l=-0.1 x.h=52.1 y.l=0.0 y.h=2.1
+ doping gauss p.type conc=4e17 x.l=-0.1 x.h=1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=-0.1 x.h=0.95 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+ doping gauss p.type conc=4e17 x.l=51 x.h=52.1 y.l=0.0 y.h=0.0
+ + char.l=0.16 lat.rotate ratio=0.65
+ doping gauss p.type conc=1e20 x.l=51.05 x.h=52.1 y.l=0.0 y.h=0.08
+ + char.l=0.03 lat.rotate ratio=0.65
+
+ contact num=2 workf=5.29
+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec
**
* BSIM1 NMOS and PMOS 1.0 \um models.
* Gummel-Poon bipolar models.
**
.model M_NSIM_1 nmos level=4
+vfb= -1.1908
+phi= .8399
+k1= 1.5329
+k2= 193.7322m
+eta= 2m
+muz= 746.0
+u0= 90.0m
+x2mz= 10.1429
+x2e= -2.5m
+x3e= 0.2m
+x2u0= -10.0m
+mus= 975.0
+u1= .20
+x2ms= 0.0
+x2u1= 0.0
+x3ms= 10
+x3u1= 5.0m
+tox=2.00000e-02
+cgdo=2.0e-10
+cgso=2.0e-10
+cgbo=0.0
+temp= 27
+vdd= 7.0
+xpart
+n0= 1.5686
+nb= 94.6392m
+nd=0.00000e+00
+rsh=30.0 cj=7.000e-004 cjsw=4.20e-010
+js=1.00e-008 pb=0.700e000
+pbsw=0.8000e000 mj=0.5 mjsw=0.33
+wdf=0 dell=0.20u
.model M_PSIM_1 pmos level=4
+vfb= -1.3674
+phi= .8414
+k1= 1.5686
+k2= 203m
+eta= 2m
+muz= 340.0
+u0= 35.0m
+x2mz= 6.0
+x2e= 0.0
+x3e= -0.2m
+x2u0= -15.0m
+mus= 440.0
+u1= .38
+x2ms= 0.0
+x2u1= 0.0
+x3ms= -20
+x3u1= -10.0m
+tox=2.00000e-02
+cgdo=2.0e-10
+cgso=2.0e-10
+cgbo=0.0
+temp= 27
+vdd= 5.0
+xpart
+n0= 1.5686
+nb= 94.6392m
+nd=0.00000e+00
+rsh=80.0 cj=7.000e-004 cjsw=4.20e-010
+js=1.00e-008 pb=0.700e000
+pbsw=0.8000e000 mj=0.5 mjsw=0.33
+wdf=0 dell=0.17u
.model M_GNPN npn
+ is=1.3e-16
+ nf=1.00 bf=262.5 ikf=25mA vaf=20v
+ nr=1.00 br=97.5 ikr=0.5mA var=1.8v
+ rc=20.0
+ re=0.09
+ rb=15.0
+ ise=4.0e-16 ne=2.1
+ isc=7.2e-17 nc=2.0
+ tf=9.4ps itf=26uA xtf=0.5
+ tr=10ns
+ cje=89.44fF vje=0.95 mje=0.5
+ cjc=12.82fF vjc=0.73 mjc=0.49
.model M_GPNP pnp
+ is=5.8e-17
+ nf=1.001 bf=96.4 ikf=12mA vaf=29v
+ nr=1.0 br=17.3 ikr=0.2mA var=2.0v
+ rc=50.0
+ re=0.17
+ rb=20.0
+ ise=6.8e-17 ne=2.0
+ isc=9.0e-17 nc=2.1
+ tf=27.4ps itf=26uA xtf=0.5
+ tr=10ns
+ cje=55.36fF vje=0.95 mje=0.58
+ cjc=11.80fF vjc=0.72 mjc=0.46

View File

@ -0,0 +1,26 @@
BICMOS INVERTER PULLDOWN CIRCUIT
VSS 2 0 0V
VIN 3 2 0V (PULSE 0.0V 4.2V 0NS 1NS 1NS 9NS 20NS)
M1 8 3 5 11 M_NMOS_1 W=4U L=1U
VD 4 8 0V
VBK 11 2 0V
Q1 10 7 9 M_NPNS AREA=8
VC 4 10 0V
VB 5 7 0V
VE 9 2 0V
CL 4 6 1PF
VL 6 2 0V
.IC V(10)=5.0V V(7)=0.0V
.TRAN 0.1NS 5NS 0NS 0.1NS
.PLOT TRAN I(VIN)
.INCLUDE BICMOS.LIB
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,24 @@
BICMOS INVERTER PULLUP CIRCUIT
VDD 1 0 5.0V
VSS 2 0 0.0V
VIN 3 0 0.75V
VC 1 11 0.0V
VB 5 15 0.0V
Q1 11 15 4 M_NPNS AREA=8
M1 5 3 1 1 M_PMOS_1 W=10U L=1U
CL 4 0 5.0PF
.IC V(4)=0.75V V(5)=0.0V
.INCLUDE BICMOS.LIB
.TRAN 0.5NS 4.0NS
.PRINT TRAN V(3) V(4)
.OPTION ACCT BYPASS=1
.END

View File

@ -0,0 +1,34 @@
SWITCHED CURRENT CELL - CLOCK FEEDTHROUGH
VDD 1 0 5.0V
VSS 2 0 0.0V
IIN 13 0 0.0
VIN 13 3 0.0
VL 4 0 2.5V
VCK 6 0 5.0V PULSE 5.0V 0.0V 5.0NS 5NS 5NS 20NS 50NS
M1 3 3 2 2 M_NMOS_5 W=5U L=5U
M2 4 5 2 2 M_NMOS_5 W=10U L=5U
M3 23 26 25 22 M_NMOS_5 W=5U L=5U
RLK1 3 0 100G
RLK2 5 0 100G
VD 3 23 0.0V
VG 6 26 0.0V
VS 5 25 0.0V
VB 2 22 0.0V
M4 7 7 1 1 M_PMOS_IDEAL W=100U L=1U
M5 3 7 1 1 M_PMOS_IDEAL W=100U L=1U
M6 4 7 1 1 M_PMOS_IDEAL W=200U L=1U
IREF 7 0 50UA
****** MODELS ******
.MODEL M_PMOS_IDEAL PMOS VTO=-1.0V KP=100U
.INCLUDE BICMOS.LIB
.TRAN 0.1NS 50NS
.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

View File

@ -0,0 +1,29 @@
CMOS 2-STAGE OPERATIONAL AMPLIFIER
VDD 1 0 2.5V
VSS 2 0 -2.5V
IBIAS 9 0 100UA
VPL 3 0 0.0V AC 0.5V
VMI 4 0 0.0V AC 0.5V 180
M1 6 3 5 5 M_PMOS_1 W=15U L=1U
M2 7 4 5 5 M_PMOS_1 W=15U L=1U
M3 6 6 2 2 M_NMOS_1 W=7.5U L=1U
M4 7 6 2 2 M_NMOS_1 W=7.5U L=1U
M5 8 7 2 2 M_NMOS_1 W=15U L=1U
M6 9 9 1 1 M_PMOS_1 W=15U L=1U
M7 5 9 1 1 M_PMOS_1 W=15U L=1U
M8 8 9 1 1 M_PMOS_1 W=15U L=1U
*CC 7 8 0.1PF
.INCLUDE BICMOS.LIB
*.OP
*.AC DEC 10 1K 100G
.DC VPL -5MV 5MV 0.1MV
.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

View File

@ -0,0 +1,30 @@
ECL INVERTER
*** (FROM MEINERZHAGEN ET AL.)
VCC 1 0 0.0V
VEE 2 0 -5.2V
VIN 3 0 -1.25V
VRF 4 0 -1.25V
*** INPUT STAGE
Q1 5 3 9 M_NPNS AREA=8
Q2 6 4 9 M_NPNS AREA=8
R1 1 5 662
R2 1 6 662
R3 9 2 2.65K
*** OUTPUT BUFFERS
Q3 1 5 7 M_NPNS AREA=8
Q4 1 6 8 M_NPNS AREA=8
R4 7 2 4.06K
R5 8 2 4.06K
*** MODEL LIBRARY
.INCLUDE BICMOS.LIB
.DC VIN -2.00 0.001 0.05
.PLOT DC V(7) V(8)
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,19 @@
EMITTER COUPLED PAIR WITH ACTIVE LOAD
VCC 1 0 5V
VEE 2 0 0V
VINP 4 0 2.99925V AC 0.5V
VINM 7 0 3V AC 0.5V 180
IEE 5 2 0.1MA
Q1 3 4 5 M_NPNS AREA=8
Q2 6 7 5 M_NPNS AREA=8
Q3 3 3 1 M_PNPS AREA=8
Q4 6 3 1 M_PNPS AREA=8
.AC DEC 10 10K 100G
.PLOT AC VDB(6)
.INCLUDE BICMOS.LIB
.OPTIONS ACCT RELTOL=1E-6
.END

View File

@ -0,0 +1,10 @@
\section*{BICMPD Benchmark}
\section*{BICMPU Benchmark}
\section*{CLKFEED Benchmark}
\section*{CMOSAMP Benchmark}
\section*{ECLINV Benchmark}
\section*{ECPAL Benchmark}
\section*{GMAMP Benchmark}
\section*{LATCH Benchmark}
\section*{PPEF Benchmarks}
\section*{RINGOSC Benchmarks}

View File

@ -0,0 +1,34 @@
BICMOS 3-STAGE AMPLIFIER
*** IN GRAY & MEYER, 3RD ED. P.266, PROB. 3.12, 8.19
VDD 1 0 5.0V
VSS 2 0 0.0V
*** VOLTAGE INPUT
*VIN 13 0 0.0V AC 1V
*CIN 13 3 1UF
*** CURRENT INPUT
IIN 3 0 0.0 AC 1.0
M1 4 3 2 2 M_NMOS_1 W=300U L=1U
M2 7 7 2 2 M_NMOS_1 W=20U L=1U
Q1 6 5 4 M_NPNS AREA=40
Q2 5 5 7 M_NPNS AREA=40
Q3 1 6 8 M_NPNS AREA=40
RL1 1 4 1K
RL2 1 6 10K
RB1 1 5 10K
RL3 8 2 1K
RF1 3 8 30K
*** NUMERICAL MODEL LIBRARY ***
.INCLUDE BICMOS.LIB
.AC DEC 10 100KHZ 100GHZ
.PLOT AC VDB(8)
.OPTIONS ACCT BYPASS=1 KEEPOPINFO
.END

View File

@ -0,0 +1,46 @@
STATIC LATCH
*** IC=1MA, RE6=3K
*** SPICE ORIGINAL 1-7-80, CIDER REVISED 4-16-93
*** BIAS CIRCUIT
*** RESISTORS
RCC2 6 8 3.33K
REE2 9 0 200
*** TRANSISTORS
Q1 6 8 4 M_NPN1D AREA=8
Q2 8 4 9 M_NPN1D AREA=8
*** MODELS
.INCLUDE BICMOS.LIB
*** SOURCES
VCC 6 0 5V
VREF 3 0 2.5V
VRSET 1 0 PULSE(2V 3V 0.1NS 0.1NS 0.1NS 0.9NS 4NS)
VSET 7 0 PULSE(2V 3V 2.1NS 0.1NS 0.1NS 0.9NS 4NS)
*** LATCH
X1 1 2 3 4 5 6 ECLNOR2
X2 5 7 3 4 2 6 ECLNOR2
*** SUBCIRCUITS
.SUBCKT ECLNOR2 1 2 3 4 5 6
** RESISTORS
RS 6 11 520
RC2 11 10 900
RE4 12 0 200
RE6 5 0 6K
** TRANSISTORS
Q1 9 1 8 M_NPN1D AREA=8
Q2 9 2 8 M_NPN1D AREA=8
Q3 11 3 8 M_NPN1D AREA=8
Q4 8 4 12 M_NPN1D AREA=8
Q5 10 10 9 M_NPN1D AREA=8
Q6 6 9 5 M_NPN1D AREA=8
.ENDS ECLNOR2
*** CONTROL CARDS
.TRAN 0.01NS 8NS
.PRINT TRAN V(1) V(7) V(5) V(2)
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,25 @@
PUSH-PULL EMITTER FOLLOWER - ONE-DIMENSIONAL MODELS
VCC 1 0 5.0V
VEE 2 0 -5.0V
VIN 3 0 0.0V (SIN 0.0V 0.1V 1KHZ) AC 1
VBU 13 3 0.7V
VBL 3 23 0.7V
RL 4 44 50
VLD 44 0 0V
Q1 5 13 4 M_NPN1D AREA=40
Q2 4 5 1 M_PNP1D AREA=200
Q3 6 23 4 M_PNP1D AREA=100
Q4 4 6 2 M_NPN1D AREA=80
.INCLUDE BICMOS.LIB
.TRAN 0.01MS 1.00001MS 0US 0.01MS
.PLOT TRAN V(4)
.OPTIONS ACCT BYPASS=1 TEMP=26.85OC RELTOL=1E-5
.END

View File

@ -0,0 +1,25 @@
PUSH-PULL EMITTER FOLLOWER - TWO-DIMENSIONAL MODELS
VCC 1 0 5.0V
VEE 2 0 -5.0V
VIN 3 0 0.0V (SIN 0.0V 0.1V 1KHZ) AC 1
VBU 13 3 0.7V
VBL 3 23 0.7V
RL 4 44 50
VLD 44 0 0V
Q1 5 13 4 M_NPNS AREA=40
Q2 4 5 1 M_PNPS AREA=200
Q3 6 23 4 M_PNPS AREA=100
Q4 4 6 2 M_NPNS AREA=80
.INCLUDE BICMOS.LIB
.TRAN 0.01MS 1.00001MS 0US 0.01MS
.PLOT TRAN V(4)
.OPTIONS ACCT BYPASS=1 TEMP=26.85OC RELTOL=1E-5
.END

View File

@ -0,0 +1,3 @@
This directory contains the additional CIDER parallel-version benchmarks
used in the thesis "Design-Oriented Mixed-Level Circuit and Device Simulation"
by David A. Gates.

View File

@ -0,0 +1,39 @@
CMOS RING OSCILLATOR - 1UM DEVICES
VDD 1 0 5.0V
VSS 2 0 0.0V
X1 1 2 3 4 INV
X2 1 2 4 5 INV
X3 1 2 5 6 INV
X4 1 2 6 7 INV
X5 1 2 7 8 INV
X6 1 2 8 9 INV
X7 1 2 9 3 INV
.IC V(3)=0.0V V(4)=2.5V V(5)=5.0V
+ V(6)=0.0V V(7)=5.0V V(8)=0.0V V(9)=5.0V
.SUBCKT INV 1 2 3 4
* VDD VSS VIN VOUT
M1 14 13 15 16 M_PMOS_1 W=6.0U
M2 24 23 25 26 M_NMOS_1 W=3.0U
VGP 3 13 0.0V
VDP 4 14 0.0V
VSP 1 15 0.0V
VBP 1 16 0.0V
VGN 3 23 0.0V
VDN 4 24 0.0V
VSN 2 25 0.0V
VBN 2 26 0.0V
.ENDS INV
.INCLUDE BICMOS.LIB
.TRAN 0.1NS 1NS
.PRINT TRAN V(3) V(4) V(5)
.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

View File

@ -0,0 +1,114 @@
CMOS RING OSCILLATOR - 2UM DEVICES
VDD 1 0 5.0V
VSS 2 0 0.0V
X1 1 2 3 4 INV
X2 1 2 4 5 INV
X3 1 2 5 6 INV
X4 1 2 6 7 INV
X5 1 2 7 8 INV
X6 1 2 8 9 INV
X7 1 2 9 3 INV
.IC V(3)=0.0V V(4)=2.5V V(5)=5.0V V(6)=0.0V
+ V(7)=5.0V V(8)=0.0V V(9)=5.0V
.SUBCKT INV 1 2 3 4
* VDD VSS VIN VOUT
M1 14 13 15 16 M_PMOS W=6.0U
M2 24 23 25 26 M_NMOS W=3.0U
VGP 3 13 0.0V
VDP 4 14 0.0V
VSP 1 15 0.0V
VBP 1 16 0.0V
VGN 3 23 0.0V
VDN 4 24 0.0V
VSN 2 25 0.0V
VBN 2 26 0.0V
.ENDS INV
.MODEL M_NMOS NUMOS
+ X.MESH L=0.0 N=1
+ X.MESH L=0.6 N=4
+ X.MESH L=0.7 N=5
+ X.MESH L=1.0 N=7
+ X.MESH L=1.2 N=11
+ X.MESH L=3.2 N=21
+ X.MESH L=3.4 N=25
+ X.MESH L=3.7 N=27
+ X.MESH L=3.8 N=28
+ X.MESH L=4.4 N=31
+
+ Y.MESH L=-.05 N=1
+ Y.MESH L=0.0 N=5
+ Y.MESH L=.05 N=9
+ Y.MESH L=0.3 N=14
+ Y.MESH L=2.0 N=19
+
+ REGION NUM=1 MATERIAL=1 Y.L=0.0
+ MATERIAL NUM=1 SILICON
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+
+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
+ MATERIAL NUM=2 OXIDE
+
+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0
+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1
+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0
+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0
+
+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05
+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2
+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2
+
+ MODELS CONCMOB FIELDMOB BGN SRH CONCTAU
+ METHOD AC=DIRECT ONEC
+ OUTPUT ^ALL.DEBUG
.MODEL M_PMOS NUMOS
+ X.MESH L=0.0 N=1
+ X.MESH L=0.6 N=4
+ X.MESH L=0.7 N=5
+ X.MESH L=1.0 N=7
+ X.MESH L=1.2 N=11
+ X.MESH L=3.2 N=21
+ X.MESH L=3.4 N=25
+ X.MESH L=3.7 N=27
+ X.MESH L=3.8 N=28
+ X.MESH L=4.4 N=31
+
+ Y.MESH L=-.05 N=1
+ Y.MESH L=0.0 N=5
+ Y.MESH L=.05 N=9
+ Y.MESH L=0.3 N=14
+ Y.MESH L=2.0 N=19
+
+ REGION NUM=1 MATERIAL=1 Y.L=0.0
+ MATERIAL NUM=1 SILICON
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+
+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
+ MATERIAL NUM=2 OXIDE
+
+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0
+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1
+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0
+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0
+
+ DOPING UNIF N.TYPE CONC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0
+ DOPING UNIF P.TYPE CONC=3E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05
+ DOPING UNIF P.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2
+ DOPING UNIF P.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2
+
+ MODELS CONCMOB FIELDMOB BGN SRH CONCTAU
+ METHOD AC=DIRECT ONEC
+ OUTPUT ^ALL.DEBUG
.TRAN 0.1NS 5.0NS
.PRINT V(4)
.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

View File

@ -0,0 +1,30 @@
Gallium Arsenide Resistor
* This transient simulation demonstrates the effects of velocity overshoot
* and velocity saturation at high lateral electric fields.
* Do not try to do DC analysis of this resistor. It will not converge
* because of the peculiar characteristics of the GaAs velocity-field
* relation. In some cases, problems can arise in transient simulation
* as well.
VPP 1 0 1v PWL 0s 0.0v 10s 1v
VNN 2 0 0.0v
D1 1 2 M_RES AREA=1
.MODEL M_RES numd level=1
+ options resistor defa=1p
+ x.mesh loc=0.0 num=1
+ x.mesh loc=1.0 num=101
+ domain num=1 material=1
+ material num=1 gaas
+ doping unif n.type conc=2.5e16
+ models fieldmob srh auger conctau
+ method ac=direct
*.OP
*.DC VPP 0.0v 10.01v 0.1v
.TRAN 1s 10.001s 0s 0.1s
.PRINT I(VPP)
.OPTION ACCT BYPASS=1
.END

View File

@ -0,0 +1,26 @@
Silicon Resistor
* This simulation demonstrates the effects of velocity saturation at
* high lateral electric fields.
VPP 1 0 10v PWL 0s 0.0v 100s 10v
VNN 2 0 0.0v
D1 1 2 M_RES AREA=1
.MODEL M_RES numd level=1
+ options resistor defa=1p
+ x.mesh loc=0.0 num=1
+ x.mesh loc=1.0 num=101
+ domain num=1 material=1
+ material num=1 silicon
+ doping unif n.type conc=2.5e16
+ models bgn srh conctau auger concmob fieldmob
+ method ac=direct
*.OP
.DC VPP 0.0v 10.01v 0.1v
*.TRAN 1s 100.001s 0s 0.2s
.PRINT I(VPP)
.OPTION ACCT BYPASS=1 RELTOL=1e-12
.END

View File

@ -0,0 +1,30 @@
ASTABLE MULTIVIBRATOR
VIN 5 0 DC 0 PULSE(0 5 0 1US 1US 100US 100US)
VCC 6 0 5.0
RC1 6 1 1K
RC2 6 2 1K
RB1 6 3 30K
RB2 5 4 30K
C1 1 4 150PF
C2 2 3 150PF
Q1 1 3 0 QMOD AREA = 100P
Q2 2 4 0 QMOD AREA = 100P
.OPTION ACCT BYPASS=1
.TRAN 0.05US 8US 0US 0.05US
.PRINT TRAN V(1) V(2) V(3) V(4)
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.END

View File

@ -0,0 +1,53 @@
MOS CHARGE PUMP
VIN 4 0 DC 0V PULSE 0 5 15NS 5NS 5NS 50NS 100NS
VDD 5 6 DC 0V PULSE 0 5 25NS 5NS 5NS 50NS 100NS
VBB 0 7 DC 0V PULSE 0 5 0NS 5NS 5NS 50NS 100NS
RD 6 2 10K
M1 5 4 3 7 MMOD W=100UM
VS 3 2 0
VC 2 1 0
C2 1 0 10PF
.IC V(3)=1.0
.TRAN 2NS 200NS
.OPTIONS ACCT BYPASS=1
.PRINT TRAN V(1) V(2)
.MODEL MMOD NUMOS
+ X.MESH N=1 L=0
+ X.MESH N=3 L=0.4
+ X.MESH N=7 L=0.6
+ X.MESH N=15 L=1.4
+ X.MESH N=19 L=1.6
+ X.MESH N=21 L=2.0
+
+ Y.MESH N=1 L=0
+ Y.MESH N=4 L=0.015
+ Y.MESH N=8 L=0.05
+ Y.MESH N=12 L=0.25
+ Y.MESH N=14 L=0.35
+ Y.MESH N=17 L=0.5
+ Y.MESH N=21 L=1.0
+
+ REGION NUM=1 MATERIAL=1 Y.L=0.015
+ MATERIAL NUM=1 SILICON
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+
+ REGION NUM=2 MATERIAL=2 Y.H=0.015 X.L=0.5 X.H=1.5
+ MATERIAL NUM=2 OXIDE
+
+ ELEC NUM=1 IX.L=18 IX.H=21 IY.L=4 IY.H=4
+ ELEC NUM=2 IX.L=5 IX.H=17 IY.L=1 IY.H=1
+ ELEC NUM=3 IX.L=1 IX.H=4 IY.L=4 IY.H=4
+ ELEC NUM=4 IX.L=1 IX.H=21 IY.L=21 IY.H=21
+
+ DOPING UNIF N.TYPE CONC=1E18 X.L=0.0 X.H=0.5 Y.L=0.015 Y.H=0.25
+ DOPING UNIF N.TYPE CONC=1E18 X.L=1.5 X.H=2.0 Y.L=0.015 Y.H=0.25
+ DOPING UNIF P.TYPE CONC=1E15 X.L=0.0 X.H=2.0 Y.L=0.015 Y.H=1.0
+ DOPING UNIF P.TYPE CONC=1.3E17 X.L=0.5 X.H=1.5 Y.L=0.015 Y.H=0.05
+
+ MODELS CONCMOB FIELDMOB
+ METHOD ONEC
.END

View File

@ -0,0 +1,29 @@
COLPITT'S OSCILLATOR CIRCUIT
R1 1 0 1
Q1 2 1 3 QMOD AREA = 100P
VCC 4 0 5
RL 4 2 750
C1 2 3 500P
C2 4 3 4500P
L1 4 2 5UH
RE 3 6 4.65K
VEE 6 0 DC -15 PWL 0 -15 1E-9 -10
.TRAN 30N 12U
.PRINT TRAN V(2)
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.OPTIONS ACCT BYPASS=1
.END

View File

@ -0,0 +1,30 @@
DIODE BRIDGE RECTIFIER
VLINE 3 4 0.0V SIN 0V 10V 60HZ
VGRND 2 0 0.0V
D1 3 1 M_PN AREA=100
D2 4 1 M_PN AREA=100
D3 2 3 M_PN AREA=100
D4 2 4 M_PN AREA=100
RL 1 2 1.0K
.MODEL M_PN NUMD LEVEL=1
+ ***************************************
+ *** ONE-DIMENSIONAL NUMERICAL DIODE ***
+ ***************************************
+ OPTIONS DEFA=1P
+ X.MESH LOC=0.0 N=1
+ X.MESH LOC=30.0 N=201
+ DOMAIN NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON
+ MOBILITY MAT=1 CONCMOD=CT FIELDMOD=CT
+ DOPING GAUSS P.TYPE CONC=1E20 X.L=0.0 X.H=0.0 CHAR.L=1.0
+ DOPING UNIF N.TYPE CONC=1E14 X.L=0.0 X.H=30.0
+ DOPING GAUSS N.TYPE CONC=5E19 X.L=30.0 X.H=30.0 CHAR.L=2.0
+ MODELS BGN ^AVAL SRH AUGER CONCTAU CONCMOB FIELDMOB
+ METHOD AC=DIRECT
.OPTION ACCT BYPASS=1 METHOD=GEAR
.TRAN 0.5MS 50MS
.PRINT I(VLINE)
.END

View File

@ -0,0 +1,34 @@
4 STAGE RTL INVERTER CHAIN
VIN 1 0 DC 0V PWL 0NS 0V 1NS 5V
VCC 12 0 DC 5.0V
RC1 12 3 2.5K
RB1 1 2 8K
Q1 3 2 0 QMOD AREA = 100P
RB2 3 4 8K
RC2 12 5 2.5K
Q2 5 4 0 QMOD AREA = 100P
RB3 5 6 8K
RC3 12 7 2.5K
Q3 7 6 0 QMOD AREA = 100P
RB4 7 8 8K
RC4 12 9 2.5K
Q4 9 8 0 QMOD AREA = 100P
.PRINT TRAN V(3) V(5) V(9)
.TRAN 1E-9 10E-9
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.OPTION ACCT BYPASS=1
.END

View File

@ -0,0 +1,70 @@
MOTOROLA MECL III ECL GATE
*.DC VIN -2.0 0 0.02
.TRAN 0.2NS 20NS
VEE 22 0 -6.0
VIN 1 0 PULSE -0.8 -1.8 0.2NS 0.2NS 0.2NS 10NS 20NS
RS 1 2 50
Q1 4 2 6 QMOD AREA = 100P
Q2 4 3 6 QMOD AREA = 100P
Q3 5 7 6 QMOD AREA = 100P
Q4 0 8 7 QMOD AREA = 100P
D1 8 9 DMOD
D2 9 10 DMOD
RP1 3 22 50K
RC1 0 4 100
RC2 0 5 112
RE 6 22 380
R1 7 22 2K
R2 0 8 350
R3 10 22 1958
Q5 0 5 11 QMOD AREA = 100P
Q6 0 4 12 QMOD AREA = 100P
RP2 11 22 560
RP3 12 22 560
Q7 13 12 15 QMOD AREA = 100P
Q8 14 16 15 QMOD AREA = 100P
RE2 15 22 380
RC3 0 13 100
RC4 0 14 112
Q9 0 17 16 QMOD AREA = 100P
R4 16 22 2K
R5 0 17 350
D3 17 18 DMOD
D4 18 19 DMOD
R6 19 22 1958
Q10 0 14 20 QMOD AREA = 100P
Q11 0 13 21 QMOD AREA = 100P
RP4 20 22 560
RP5 21 22 560
.MODEL DMOD D RS=40 TT=0.1NS CJO=0.9PF N=1 IS=1E-14 EG=1.11 VJ=0.8 M=0.5
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=10 LOC=0.9
+ X.MESH NODE=20 LOC=1.1
+ X.MESH NODE=30 LOC=1.4
+ X.MESH NODE=40 LOC=1.6
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.OPTIONS ACCT BYPASS=1
.PRINT TRAN V(12) V(21)
.END

View File

@ -0,0 +1,51 @@
RESISTIVE LOAD NMOS INVERTER
VIN 1 0 PWL 0 0.0 2NS 5
VDD 3 0 DC 5.0
RD 3 2 2.5K
M1 2 1 4 5 MMOD W=10UM
CL 2 0 2PF
VB 5 0 0
VS 4 0 0
.MODEL MMOD NUMOS
+ X.MESH L=0.0 N=1
+ X.MESH L=0.6 N=4
+ X.MESH L=0.7 N=5
+ X.MESH L=1.0 N=7
+ X.MESH L=1.2 N=11
+ X.MESH L=3.2 N=21
+ X.MESH L=3.4 N=25
+ X.MESH L=3.7 N=27
+ X.MESH L=3.8 N=28
+ X.MESH L=4.4 N=31
+
+ Y.MESH L=-.05 N=1
+ Y.MESH L=0.0 N=5
+ Y.MESH L=.05 N=9
+ Y.MESH L=0.3 N=14
+ Y.MESH L=2.0 N=19
+
+ REGION NUM=1 MATERIAL=1 Y.L=0.0
+ MATERIAL NUM=1 SILICON
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+
+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
+ MATERIAL NUM=2 OXIDE
+
+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0
+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1
+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0
+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0
+
+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05
+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2
+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2
+
+ MODELS CONCMOB FIELDMOB
+ METHOD AC=DIRECT ONEC
.TRAN 0.2NS 30NS
.OPTIONS ACCT BYPASS=1
.PRINT TRAN V(1) V(2)
.END

View File

@ -0,0 +1,55 @@
TURNOFF TRANSIENT OF PASS TRANSISTOR
M1 11 2 3 4 MMOD W=20UM
CS 1 0 6.0PF
CL 3 0 6.0PF
R1 3 6 200K
VIN 6 0 DC 0
VDRN 1 11 DC 0
VG 2 0 DC 5 PWL 0 5 0.1N 0 1 0
VB 4 0 DC 0.0
.TRAN 0.05NS 0.2NS 0.0NS 0.05NS
.PRINT TRAN V(1) I(VDRN)
.IC V(1)=0 V(3)=0
.OPTION ACCT BYPASS=1
.MODEL MMOD NUMOS
+ X.MESH L=0.0 N=1
+ X.MESH L=0.6 N=4
+ X.MESH L=0.7 N=5
+ X.MESH L=1.0 N=7
+ X.MESH L=1.2 N=11
+ X.MESH L=3.2 N=21
+ X.MESH L=3.4 N=25
+ X.MESH L=3.7 N=27
+ X.MESH L=3.8 N=28
+ X.MESH L=4.4 N=31
+
+ Y.MESH L=-.05 N=1
+ Y.MESH L=0.0 N=5
+ Y.MESH L=.05 N=9
+ Y.MESH L=0.3 N=14
+ Y.MESH L=2.0 N=19
+
+ REGION NUM=1 MATERIAL=1 Y.L=0.0
+ MATERIAL NUM=1 SILICON
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+
+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
+ MATERIAL NUM=2 OXIDE
+
+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0
+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1
+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0
+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0
+
+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05
+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2
+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2
+
+ MODELS CONCMOB FIELDMOB
+ METHOD AC=DIRECT ONEC
.END

View File

@ -0,0 +1,67 @@
BICMOS INVERTER PULLUP CIRCUIT
VDD 1 0 5.0V
VSS 2 0 0.0V
VIN 3 0 0.75V
VC 1 11 0.0V
VB 5 15 0.0V
Q1 11 15 4 M_NPN AREA=4
M1 5 3 1 1 M_PMOS W=20U L=2U AD=30P AS=30P PD=21U PS=21U
CL 4 0 5.0PF
.IC V(4)=0.75V V(5)=0.0V
.MODEL M_PMOS PMOS VTO=-0.8 UO=250 TOX=25N NSUB=5E16
+ UCRIT=10K UEXP=.15 VMAX=50K NEFF=2 XJ=.02U
+ LD=.15U CGSO=.1N CGDO=.1N CJ=.12M MJ=0.5
+ CJSW=0.3N MJSW=0.5 LEVEL=2
.MODEL M_NPN NBJT LEVEL=2
+ TITLE TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ $ SINCE ONLY HALF THE DEVICE IS SIMULATED, DOUBLE THE UNIT WIDTH TO GET
+ $ 1.0 UM EMITTER.
+ OPTIONS DEFW=2.0U
+ OUTPUT STATISTICS
+
+ X.MESH W=2.0 H.E=0.02 H.M=0.5 R=2.0
+ X.MESH W=0.5 H.S=0.02 H.M=0.2 R=2.0
+
+ Y.MESH L=-0.2 N=1
+ Y.MESH L= 0.0 N=5
+ Y.MESH W=0.10 H.E=0.004 H.M=0.05 R=2.5
+ Y.MESH W=0.15 H.S=0.004 H.M=0.02 R=2.5
+ Y.MESH W=1.05 H.S=0.02 H.M=0.1 R=2.5
+
+ DOMAIN NUM=1 MATERIAL=1 X.L=2.0 Y.H=0.0
+ DOMAIN NUM=2 MATERIAL=2 X.H=2.0 Y.H=0.0
+ DOMAIN NUM=3 MATERIAL=3 Y.L=0.0
+ MATERIAL NUM=1 POLYSILICON
+ MATERIAL NUM=2 OXIDE
+ MATERIAL NUM=3 SILICON
+
+ ELEC NUM=1 X.L=0.0 X.H=0.0 Y.L=1.1 Y.H=1.3
+ ELEC NUM=2 X.L=0.0 X.H=0.5 Y.L=0.0 Y.H=0.0
+ ELEC NUM=3 X.L=2.0 X.H=3.0 Y.L=-0.2 Y.H=-0.2
+
+ DOPING GAUSS N.TYPE CONC=3E20 X.L=2.0 X.H=3.0 Y.L=-0.2 Y.H=0.0
+ + CHAR.L=0.047 LAT.ROTATE
+ DOPING GAUSS P.TYPE CONC=5E18 X.L=0.0 X.H=5.0 Y.L=-0.2 Y.H=0.0
+ + CHAR.L=0.100 LAT.ROTATE
+ DOPING GAUSS P.TYPE CONC=1E20 X.L=0.0 X.H=0.5 Y.L=-0.2 Y.H=0.0
+ + CHAR.L=0.100 LAT.ROTATE RATIO=0.7
+ DOPING UNIF N.TYPE CONC=1E16 X.L=0.0 X.H=5.0 Y.L=0.0 Y.H=1.3
+ DOPING GAUSS N.TYPE CONC=5E19 X.L=0.0 X.H=5.0 Y.L=1.3 Y.H=1.3
+ + CHAR.L=0.100 LAT.ROTATE
+
+ METHOD AC=DIRECT ITLIM=10
+ MODELS BGN SRH AUGER CONCTAU CONCMOB FIELDMOB
.TRAN 0.5NS 4.0NS
.PRINT TRAN V(3) V(4)
.OPTION ACCT BYPASS=1
.END

View File

@ -0,0 +1,3 @@
This directory contains the CIDER serial-version benchmarks used in the
thesis "Design-Oriented Mixed-Level Circuit and Device Simulation" by
David A. Gates.

View File

@ -0,0 +1,40 @@
DIODE REVERSE RECOVERY
VPP 1 0 0.0V (PULSE 1.0V -1.0V 1NS 1PS 1PS 20NS 40NS)
VNN 2 0 0.0V
RS 1 3 1.0
LS 3 4 0.5UH
DT 4 2 M_PIN AREA=1
.MODEL M_PIN NUMD LEVEL=2
+ OPTIONS DEFW=100U
+ X.MESH N=1 L=0.0
+ X.MESH N=2 L=0.2
+ X.MESH N=4 L=0.4
+ X.MESH N=8 L=0.6
+ X.MESH N=13 L=1.0
+
+ Y.MESH N=1 L=0.0
+ Y.MESH N=9 L=4.0
+ Y.MESH N=24 L=10.0
+ Y.MESH N=29 L=15.0
+ Y.MESH N=34 L=20.0
+
+ DOMAIN NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON TN=20NS TP=20NS
+
+ ELECTRODE NUM=1 X.L=0.6 X.H=1.0 Y.L=0.0 Y.H=0.0
+ ELECTRODE NUM=2 X.L=-0.1 X.H=1.0 Y.L=20.0 Y.H=20.0
+
+ DOPING GAUSS P.TYPE CONC=1.0E19 CHAR.LEN=1.076 X.L=0.75 X.H=1.1 Y.H=0.0
+ + LAT.ROTATE RATIO=0.1
+ DOPING UNIF N.TYPE CONC=1.0E14
+ DOPING GAUSS N.TYPE CONC=1.0E19 CHAR.LEN=1.614 X.L=-0.1 X.H=1.1 Y.L=20.0
+
+ MODELS BGN SRH AUGER CONCTAU CONCMOB FIELDMOB
.OPTION ACCT BYPASS=1
.TRAN 0.1NS 10NS
.PRINT TRAN V(3) I(VIN)
.END

View File

@ -0,0 +1,25 @@
RTL INVERTER
VIN 1 0 DC 1 PWL 0 4 1NS 0
VCC 12 0 DC 5.0
RC1 12 3 2.5K
RB1 1 2 8K
Q1 3 2 0 QMOD AREA = 100P
.OPTION ACCT BYPASS=1
.TRAN 0.5N 5N
.PRINT TRAN V(2) V(3)
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.END

View File

@ -0,0 +1,41 @@
VOLTAGE CONTROLLED OSCILLATOR
RC1 7 5 1K
RC2 7 6 1K
Q5 7 7 5 QMOD AREA = 100P
Q6 7 7 6 QMOD AREA = 100P
Q3 7 5 2 QMOD AREA = 100P
Q4 7 6 1 QMOD AREA = 100P
IB1 2 0 .5MA
IB2 1 0 .5MA
CB1 2 0 1PF
CB2 1 0 1PF
Q1 5 1 3 QMOD AREA = 100P
Q2 6 2 4 QMOD AREA = 100P
C1 3 4 .1UF
IS1 3 0 DC 2.5MA PULSE 2.5MA 0.5MA 0 1US 1US 50MS
IS2 4 0 1MA
VCC 7 0 10
.MODEL QMOD NBJT LEVEL=1
+ X.MESH NODE=1 LOC=0.0
+ X.MESH NODE=61 LOC=3.0
+ REGION NUM=1 MATERIAL=1
+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17
+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+ DOPING UNIF N.TYPE CONC=1E17 X.L=0.0 X.H=1.0
+ DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
+ DOPING UNIF N.TYPE CONC=1E15 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25
.OPTION ACCT BYPASS=1
.TRAN 3US 600US 0 3US
.PRINT TRAN V(4)
.END

View File

@ -0,0 +1,203 @@
NM1 PM1 NM2 PM2 NM3 PY1 ML1 ML2 DU1 DU2
*
* Example process file
*
*PROCESS=BSIM
*RUN=
*WAFER=
*XPOS=6
*YPOS=5
*OPERATOR=Min-Chie
*DATE=July-16-85
*
* NMOS-1 PARAMETERS (07-16-85)
*
-1.0087E+000,-2.1402E-001,3.44354E-001
7.96434E-001,0.00000E+000,0.00000E+000
1.31191E+000,3.23395E-001,-5.7698E-001
1.46640E-001,1.68585E-001,-1.8796E-001
-1.0027E-003,-9.4847E-003,1.47316E-002
5.34334E+002,7.9799E-001,4.7740E-001
4.38497E-002,6.38105E-002,-6.1053E-002
-5.7332E-002,1.01174E+000,1.62706E-002
8.25434E+000,-2.4197E+001,1.95696E+001
-7.6911E-004,9.62411E-003,-3.7951E-003
7.86777E-004,7.35448E-004,-1.7796E-003
1.06821E-003,-8.0958E-003,4.03379E-003
-1.9209E-002,-7.4573E-002,1.47520E-002
5.40612E+002,6.21401E+002,-1.9190E+002
-1.2992E+001,-6.4900E+001,4.29043E+001
-9.4035E+000,1.18239E+002,-2.9747E+001
0.0000E-002,0.00000E-001,0.0000E-002
3.00000E-002,2.70000E+001,5.00000E+000
** 2.70000E-010,2.70000E-010,1.40000E-010
** remove the overlap capacitances !!
0.00000E-000,0.00000E-000,0.00000E-000
1.0 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
*
*PROCESS=BSIM
*RUN=
*WAFER=
*XPOS=6
*YPOS=5
*OPERATOR= TRANSLATED FROM NM1
* (BY SCALING THE MOBILITY PARAMETERS)
*DATE=July-16-85
*
* PMOS-1 PARAMETERS (07-16-85)
*
-1.0087E+000,-2.1402E-001,3.44354E-001
7.96434E-001,0.00000E+000,0.00000E+000
1.31191E+000,3.23395E-001,-5.7698E-001
1.46640E-001,1.68585E-001,-1.8796E-001
-1.0027E-003,-9.4847E-003,1.47316E-002
1.82193E+002,2.7226E-001,1.6288E-001
4.38497E-002,6.38105E-002,-6.1053E-002
-5.7332E-002,1.01174E+000,1.62706E-002
2.81626E+000,-0.8255E+001,0.66768E+001
-7.6911E-004,9.62411E-003,-3.7951E-003
7.86777E-004,7.35448E-004,-1.7796E-003
1.06821E-003,-8.0958E-003,4.03379E-003
-1.9209E-002,-7.4573E-002,1.47520E-002
1.84449E+002,2.12012E+002,-0.6547E+002
-0.4433E+001,-2.2143E+001,1.46383E+001
-3.2083E+000,0.40341E+002,-1.0149E+001
0.0000E-002,0.00000E-001,0.0000E-002
3.00000E-002,2.70000E+001,5.00000E+000
** 2.70000E-010,2.70000E-010,1.40000E-010
** remove the overlap capacitances !!
0.00000E-000,0.00000E-000,0.00000E-000
1.0 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
*
*
*PROCESS=BSIM
*RUN=6,8
*WAFER=1
*XPOS=6
*YPOS=5
*OPERATOR=joey & min
*DATE=3/8/'85
*
* NMOS-2 PARAMETERS (03-08-85)
*
-1.0682E+000,-6.7765E-002,4.15888E-001
7.93602E-001,0.00000E+000,0.00000E+000
1.38210E+000,1.56889E-001,-6.3435E-001
1.60163E-001,1.41849E-001,-2.0333E-001
-1.1885E-002,1.33579E-002,2.13053E-002
5.44582E+002,9.4444E-001,4.4423E-001
4.02955E-002,5.36003E-002,-5.1224E-002
2.01256E-001,4.30621E-001,-1.5909E-001
-1.1522E+000,-2.5360E+000,2.48135E+001
-3.0525E-003,1.40355E-002,-2.1259E-003
2.33703E-003,-1.9621E-003,-3.0147E-003
-1.5014E-003,-1.7938E-003,5.04494E-003
-9.6961E-002,9.68463E-002,6.56404E-002
5.95572E+002,4.75833E+002,-2.3062E+002
-7.7819E+001,7.75110E+001,8.19963E+001
-1.8177E+001,1.23358E+002,-1.9316E+001
0.0000E-003,0.00000E-002,0.0000E-002
3.20000E-002,2.70000E+001,5.00000E+000
2.69000E-010,2.69000E-010,2.34000E-010
1.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
*
* PMOS-2 PARAMETERS (03-08-85)
*
-2.1389E-001,3.36471E-002,2.20237E-001
6.97239E-001,0.00000E+000,0.00000E+000
5.95618E-001,-9.7957E-002,-8.1902E-002
-2.0029E-002,1.97751E-002,-4.0038E-002
-1.4030E-002,3.62814E-002,1.44720E-002
1.82193E+002,8.6560E-001,5.7444E-001
1.12067E-001,9.28463E-002,-8.8985E-002
2.39431E-002,8.89483E-002,1.05634E-002
7.51914E+000,-1.8327E+000,3.98658E+000
-1.3199E-003,4.00836E-003,1.97847E-004
5.70255E-004,-1.2309E-003,-2.3082E-003
5.07623E-003,-1.8537E-004,1.76966E-003
-1.2781E-002,1.14420E-002,6.36308E-003
1.89043E+002,8.64555E+001,-3.4304E+001
4.09098E+000,3.51921E+000,4.49145E+000
6.71879E-001,7.66627E+000,-1.5826E+000
0.0000E-003,0.00000E-003,0.0000E-003
3.20000E-002,2.70000E+001,5.00000E+000
4.39000E-010,4.39000E-010,2.34000E-010
1.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
*
*PROCESS=BSIM
*RUN=
*WAFER=
*XPOS=6
*YPOS=5
*OPERATOR= TRANSLATED FROM NM1
* (BY SHIFTING VFB --- THE SIZE-INDEP. TERM ONLY)
*DATE=July-16-85
*
* NMOS-3 PARAMETERS (DEPLETION-MODE) (07-16-85)
*
-5.6087E+000,-2.1402E-001,3.44354E-001
+** -1.0087E+000,-2.1402E-001,3.44354E-001
7.96434E-001,0.00000E+000,0.00000E+000
1.31191E+000,3.23395E-001,-5.7698E-001
1.46640E-001,1.68585E-001,-1.8796E-001
-1.0027E-003,-9.4847E-003,1.47316E-002
5.34334E+002,7.9799E-001,4.7740E-001
4.38497E-002,6.38105E-002,-6.1053E-002
-5.7332E-002,1.01174E+000,1.62706E-002
8.25434E+000,-2.4197E+001,1.95696E+001
-7.6911E-004,9.62411E-003,-3.7951E-003
7.86777E-004,7.35448E-004,-1.7796E-003
1.06821E-003,-8.0958E-003,4.03379E-003
-1.9209E-002,-7.4573E-002,1.47520E-002
5.40612E+002,6.21401E+002,-1.9190E+002
-1.2992E+001,-6.4900E+001,4.29043E+001
-9.4035E+000,1.18239E+002,-2.9747E+001
0.0000E-002,0.00000E-001,0.0000E-002
3.00000E-002,2.70000E+001,5.00000E+000
** 2.70000E-010,2.70000E-010,1.40000E-010
** remove the overlap capacitances !!
0.00000E-000,0.00000E-000,0.00000E-000
1.0 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
0.0, 0.0, 0.0
*
**************************************
**************************************
*
* poly layer-1
*
30.0, 7.0E-5, 0, 0, 0
0, 0, 0, 0, 0
*
* metal layer-1
*
0.040, 2.60E-5, 0, 0, 0
0, 0, 0, 0, 0
*
* metal layer-2 (top metal)
*
0.030, 1.3E-5, 0, 0, 0
0, 0, 0, 0, 0
*
* n+ diffusion layer
*
35.0, 2.75E-4, 1.90E-10, 1.0E-5, 0.7
0.8, 0.5, 0.33, 0, 0
*
* p+ diffusion layer
*
120.0, 3.1E-4, 3.0E-010, 1.0E-5, 0.7
0.8, 0.5, 0.33, 0, 0

26
examples/vbic/CEamp.sp Normal file
View File

@ -0,0 +1,26 @@
VBIC Pole Zero Test
Vcc 3 0 5
Rc 2 3 1k
Rb 3 1 200k
I1 0 1 AC 1
Vmeas 4 2
Cshunt 4 0 .1u
Q1 2 1 0 0 N1
.control
ac dec 100 0.1Meg 10G
plot db(i(vmeas))
plot ph(i(vmeas))
pz 1 0 4 0 cur pz
print all
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

21
examples/vbic/FG.sp Normal file
View File

@ -0,0 +1,21 @@
VBIC Gummel Test
V1 Q1_E 0 5.0
VC Q1_C 0 0.0
VB Q1_B 0 0.0
Q1 Q1_C Q1_B Q1_E P1
.DC V1 0.2 1.2 10m
.OPTIONS GMIN=1e-13
.control
run
plot abs(i(vc)) abs(i(vb)) ylimit 1e-15 0.1 ylog
plot abs(i(vc))/abs(i(vb)) vs abs(-i(vc)) xlimit 1e-09 0.1 xlog
.endc
.MODEL P1 PNP LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

20
examples/vbic/FO.sp Normal file
View File

@ -0,0 +1,20 @@
VBIC Output Test
V1 V1_P V1_N 0.0
VB V1_N 0 0.5
VC Q1_C 0 0.0
Q1 Q1_C V1_P 0 N1
.DC VC 0 5 50M VB 700M 1 50M
.control
run
plot -i(vc)
plot -i(vb)
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

45
examples/vbic/diffamp.sp Normal file
View File

@ -0,0 +1,45 @@
VBIC DiffAmp Test
Q8 Q8_B Q8_B VCC P1
Q9 Q9_B Q9_B Q8_B P1
V1 VCC 0 3.3
V2 V2_P R3_N AC 1 DC 0 Sine(0 10m 10Meg 0 0)
I1 VCC I1_N 10u
Q12 Q9_B I1_N 0 N1 M=2
Q13 Q5_B I1_N 0 N1 M=2
Q10 Q1_E I1_N 0 N1
Q11 I1_N I1_N 0 N1
E1 E1_P 0 Q3_C Q4_C 1
rl e1_p 0 1e6
Q2 Q6_C R3_N Q1_E N1
R4 R3_N 0 1K
Q3 Q3_C Q9_B Q5_C P1
Q1 Q5_C V2_P Q1_E N1
Q6 Q6_C Q5_B VCC P1
R1 Q3_C 0 100k
Q7 Q5_B Q5_B VCC P1
Q4 Q4_C Q9_B Q6_C P1
R2 Q4_C 0 100k
R3 VCC R3_N 1K
Q5 Q5_C Q5_B VCC P1
*.OP
.TRAN 1n 1u 0 10n
*.AC DEC 25 100k 1G
.control
run
plot v(e1_p)
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.MODEL P1 PNP LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

19
examples/vbic/diode.sp Normal file
View File

@ -0,0 +1,19 @@
VBIC diode test
Q1 0 0 VCC P1
V1 VCC 0 1.0
.OP
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.MODEL P1 PNP LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

View File

@ -0,0 +1,25 @@
VBIC Noise Scale Test
V1 R3_P 0 5
V2 V2_P 0 5 AC 1
C1 R3_N V2_P 1n
R4 R3_N 0 100k
Q1 VOUT R3_N Q1_E N1 M=2
*Q2 VOUT R3_N Q1_E N1
R1 R3_P VOUT 100k
R2 Q1_E 0 10k
R3 R3_P R3_N 500k
.NOISE v(vout) V2 DEC 25 1k 100Meg
.control
run
plot sqrt(onoise_spectrum) loglog
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11
+ RTH=300 KFN=10e-15 AFN=1 BFN=1
.END

20
examples/vbic/temp.sp Normal file
View File

@ -0,0 +1,20 @@
VBIC Temp test
V1 1 0 1.0
VC 1 Q1_C 0.0
VB 1 Q1_B 0.0
Q1 Q1_C Q1_B 0 N1
.OPTIONS TEMP=150
.DC V1 0.2 1.2 10m
.control
run
plot i(vc) i(vb)
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

View File

@ -0,0 +1,23 @@
VBIC Aplac Transient Test
V1 R3_P 0 5
V2 V2_P 0 5 Pulse(0 100m 0 10n 10n 490.1n 1u)
C1 R3_N V2_P 1n
R4 R3_N 0 100k
Q1 R1_N R3_N Q1_E N1
R1 R3_P R1_N 100k
R2 Q1_E 0 10k
R3 R3_P R3_N 500k
.control
tran 10n 10u
run
plot v(Q1_E)
.endc
.MODEL N1 NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END

46
examples/vbic/vbic.sp Normal file
View File

@ -0,0 +1,46 @@
VBIC Test
VC 1 0 DC 2.0
VB 2 0 DC 0.7
VE 3 0 DC 0.0
*VS 4 0 DC 0.0
Q1 1 2 3 VBIC_HSPICE
.OPTIONS GMIN=1e-13
*.OP
.DC VB 0.2 1.0 0.01
.control
run
plot abs(-i(vc)) abs(-i(vb)) ylimit 1e-12 0.1 ylog
plot abs(-i(vc))/abs(-i(vb)) vs abs(-i(vc)) xlimit 1e-09 0.1 xlog
.endc
.MODEL VBIC NPN LEVEL=4
+ RCX=10 RCI=10 RBX=1 RBI=10 RE=1 RBP=10 RS=10
+ IBEN=1.0E-13
+ RTH=100
.MODEL VBIC_HSPICE NPN LEVEL=4
+ AFN=1 AJC=-0.5 AJE=0.5 AJS=0.5
+ AVC1=0 AVC2=0 BFN=1 CBCO=0 CBEO=0 CJC=2E-14
+ CJCP=4E-13 CJE=1E-13 CJEP=1E-13 CTH=0
+ EA=1.12 EAIC=1.12 EAIE=1.12 EAIS=1.12 EANC=1.12
+ EANE=1.12 EANS=1.12 FC=0.9 GAMM=2E-11 HRCF=2
+ IBCI=2E-17 IBCIP=0 IBCN=5E-15 IBCNP=0
+ IBEI=1E-18 IBEIP=0 IBEN=5E-15 IBENP=0
+ IKF=2E-3 IKP=2E-4 IKR=2E-4 IS=1E-16 ISP=1E-15 ITF=8E-2
+ KFN=0 MC=0.33 ME=0.33 MS=0.33
+ NCI=1 NCIP=1 NCN=2 NCNP=2 NEI=1 NEN=2
+ NF=1 NFP=1 NR=1 PC=0.75 PE=0.75 PS=0.75 QCO=1E-12 QTF=0
+ RBI=4 RBP=4 RBX=1 RCI=6 RCX=1 RE=0.2 RS=2
+ RTH=300 TAVC=0 TD=2E-11 TF=10E-12 TNF=0 TR=100E-12
+ TNOM=25 VEF=10 VER=4 VO=2
+ VTF=0 WBE=1 WSP=1
+ XII=3 XIN=3 XIS=3 XRBI=1 XRCI=1 XRE=1 XRS=1 XTF=20 XVO=0
.MODEL VBIC_APLAC NPN LEVEL=4
+ IS=1e-16 IBEI=1e-18 IBEN=5e-15 IBCI=2e-17 IBCN=5e-15 ISP=1e-15 RCX=10
+ RCI=60 RBX=10 RBI=40 RE=2 RS=20 RBP=40 VEF=10 VER=4 IKF=2e-3 ITF=8e-2
+ XTF=20 IKR=2e-4 IKP=2e-4 CJE=1e-13 CJC=2e-14 CJEP=1e-13 CJCP=4e-13 VO=2
+ GAMM=2e-11 HRCF=2 QCO=1e-12 AVC1=2 AVC2=15 TF=10e-12 TR=100e-12 TD=2e-11 RTH=300
.END