manta/test/functional_sim/logic_analyzer_tb/logic_analyzer_tb.sv

312 lines
8.3 KiB
Systemverilog

`default_nettype none
`define CP 10
`define HCP 5
task read_reg (
input [15:0] addr,
output [15:0] data,
input string desc
);
logic_analyzer_tb.tb_la_addr = addr;
logic_analyzer_tb.tb_la_rw = 0;
logic_analyzer_tb.tb_la_valid = 1;
#`CP
logic_analyzer_tb.tb_la_valid = 0;
while (!logic_analyzer_tb.la_tb_valid) #`CP;
data = logic_analyzer_tb.la_tb_rdata;
$display(" -> read 0x%h from addr 0x%h (%s)", data, addr, desc);
endtask
task write_reg(
input [15:0] addr,
input [15:0] data,
input string desc
);
logic_analyzer_tb.tb_la_addr = addr;
logic_analyzer_tb.tb_la_wdata = data;
logic_analyzer_tb.tb_la_rw = 1;
logic_analyzer_tb.tb_la_valid = 1;
#`CP
logic_analyzer_tb.tb_la_valid = 0;
while (!logic_analyzer_tb.la_tb_valid) #`CP;
$display(" -> wrote 0x%h to addr 0x%h (%s)", data, addr, desc);
endtask
task write_and_verify(
input [15:0] addr,
input [15:0] write_data,
input string desc
);
reg [15:0] read_data;
write_reg(addr, write_data, desc);
read_reg(addr, read_data, desc);
assert(read_data == write_data) else $error("data read does not match data written!");
endtask
task read_all_reg();
string desc;
for(int i = 0; i < (logic_analyzer_tb.la.sample_mem.BASE_ADDR + logic_analyzer_tb.la.SAMPLE_DEPTH); i++) begin
if(i == logic_analyzer_tb.la.fsm.BASE_ADDR) desc = "FSM";
if(i == logic_analyzer_tb.la.trig_blk.BASE_ADDR) desc = "TRIG BLK";
if(i == logic_analyzer_tb.la.sample_mem.BASE_ADDR) desc = "SAMPLE MEM";
read_reg(i, logic_analyzer_tb.read_value, desc);
end
endtask
module logic_analyzer_tb;
// boilerplate
logic clk;
integer test_num;
// signal generator
logic larry;
logic curly;
logic moe;
logic [3:0] shemp;
// tb -> la bus
logic [15:0] tb_la_addr;
logic [15:0] tb_la_wdata;
logic [15:0] tb_la_rdata;
logic tb_la_rw;
logic tb_la_valid;
// la -> tb bus
logic [15:0] la_tb_addr;
logic [15:0] la_tb_wdata;
logic [15:0] la_tb_rdata;
logic la_tb_rw;
logic la_tb_valid;
logic_analyzer #(.BASE_ADDR(0), .SAMPLE_DEPTH(128)) la(
.clk(clk),
// probes
.larry(larry),
.curly(curly),
.moe(moe),
.shemp(shemp),
// input port
.addr_i(tb_la_addr),
.wdata_i(tb_la_wdata),
.rdata_i(tb_la_rdata),
.rw_i(tb_la_rw),
.valid_i(tb_la_valid),
// output port
.addr_o(la_tb_addr),
.wdata_o(la_tb_wdata),
.rdata_o(la_tb_rdata),
.rw_o(la_tb_rw),
.valid_o(la_tb_valid));
always begin
#`HCP
clk = !clk;
end
reg [15:0] read_value;
initial begin
$dumpfile("logic_analyzer_tb.vcd");
$dumpvars(0, logic_analyzer_tb);
// setup and reset
clk = 0;
test_num = 0;
tb_la_addr = 0;
tb_la_rdata = 0;
tb_la_wdata = 0;
tb_la_rw = 0;
tb_la_valid = 0;
larry = 0;
curly = 0;
moe = 0;
shemp = 0;
#`HCP
#(10*`CP);
/* ==== Test 1 Begin ==== */
$display("\n=== test 1: read/write to FSM registers, verify ===");
test_num = 1;
// state register
write_and_verify(0, la.fsm.IDLE, "state reg");
write_and_verify(0, la.fsm.FILLED, "state reg");
write_and_verify(0, la.fsm.IDLE, "state reg");
// trigger_loc register
write_and_verify(1, 0, "trigger_loc reg");
write_and_verify(1, 'h69, "trigger_loc reg");
write_and_verify(1, 'h0612, "trigger_loc reg");
// since we just moved the trigger location, the core has started moving into position
// if it's functioning correctly. this means we need to reset the position and state
// before testing the present_loc register.
// write_and_verify(1, 0, "trigger_loc reg");
// write_and_verify(0, 0, "state reg");
// // present_loc register
// write_and_verify(2, 0, "present_loc reg");
// write_and_verify(2, 0, "present_loc reg");
#(10*`CP);
/* ==== Test 1 End ==== */
/* ==== Test 2 Begin ==== */
$display("\n=== test 2: read/write to trigger block registers, verify ===");
test_num = 2;
// larry
write_and_verify(3, 0, "larry_op");
write_and_verify(3, 2, "larry_op");
write_and_verify(3, 0, "larry_op");
write_and_verify(4, 0, "larry_arg");
write_and_verify(4, 1, "larry_arg");
write_and_verify(4, 0, "larry_arg");
// curly
write_and_verify(5, 0, "curly_op");
write_and_verify(5, 3, "curly_op");
write_and_verify(5, 0, "curly_op");
write_and_verify(6, 0, "curly_arg");
write_and_verify(6, 1, "curly_arg");
write_and_verify(6, 0, "curly_arg");
// moe
write_and_verify(7, 0, "moe_op");
write_and_verify(7, 5, "moe_op");
write_and_verify(7, 0, "moe_op");
write_and_verify(8, 0, "moe_arg");
write_and_verify(8, 1, "moe_arg");
write_and_verify(8, 0, "moe_arg");
// shemp
write_and_verify(9, 0, "shemp_op");
write_and_verify(9, 7, "shemp_op");
write_and_verify(9, 0, "shemp_op");
write_and_verify(10, 0, "shemp_arg");
write_and_verify(10, 7, "shemp_arg");
write_and_verify(10, 0, "shemp_arg");
#(10*`CP);
/* ==== Test 2 End ==== */
/* ==== Test 3 Begin ==== */
$display("\n=== test 3: verify FSM doesn't move out of IDLE when not running ===");
test_num = 3;
write_and_verify(3, 8, "larry_op"); // set operation to eq
write_and_verify(4, 1, "larry_arg"); // set argument to 1
// set larry = 1, verify core doesn't trigger
$display(" -> set larry = 1");
larry = 1;
$display(" -> la core is in state 0x%h", la.fsm.state);
assert(la.fsm.state == la.fsm.IDLE) else $error("core moved outside of IDLE state when not running!");
$display(" -> wait a clock cycle");
#`CP
$display(" -> la core is in state 0x%h", la.fsm.state);
assert(la.fsm.state == la.fsm.IDLE) else $error("core moved outside of IDLE state when not running!");
$display(" -> set larry = 0");
larry = 0;
#(10*`CP);
/* ==== Test 3 End ==== */
/* ==== Test 4 Begin ==== */
$display("\n=== test 4: verify FSM does move out of IDLE when running ===");
test_num = 4;
$display(" -> moving core to START_CAPTURE");
write_reg(0, 1, "state");
#`CP
$display(" -> set larry = 1");
larry = 1;
// read
$display(" -> la core is in state 0x%h", la.fsm.state);
$display(" -> wait a clock cycle");
#`CP
$display(" -> la core is in state 0x%h", la.fsm.state);
// run until the FILLED state is reached
$display(" -> wait until FILLED state is reached");
while (la.fsm.state != la.fsm.FILLED) begin
{larry, curly, moe, shemp} = {larry, curly, moe, shemp} + 1;
#`CP;
end
$display(" -> read from sample memory:");
read_all_reg();
#(200*`CP);
/* ==== Test 4 End ==== */
/* ==== Test 5 Begin ==== */
$display("\n=== test 5: change trigger to fire on shemp > 3, and verify ===");
test_num = 5;
write_and_verify(9, 6, "shemp_op"); // set operation to GT
write_and_verify(10, 3, "shemp_arg"); // set argument to 3
assert( (la.fsm.state == la.fsm.IDLE) || (la.fsm.state == la.fsm.FILLED) )
else $error("core is running when it shouldn't be!");
larry = 0;
curly = 0;
moe = 0;
shemp = 0;
write_reg(0, la.fsm.START_CAPTURE, "state");
shemp = 4;
$display(" -> set shemp = 4");
// run until the FILLED state is reached
$display(" -> wait until FILLED state is reached");
while (la.fsm.state != la.fsm.FILLED) begin
{larry, curly, moe, shemp} = {larry, curly, moe, shemp} + 2;
#`CP;
end
$display(" -> read from sample memory:");
read_all_reg();
#(10*`CP);
/* ==== Test 5 End ==== */
$finish();
end
endmodule
`default_nettype wire