make downlink core export as just one verilog file

This commit is contained in:
Fischer Moseley 2023-02-05 10:22:54 -05:00
parent f5c2af06d0
commit e48f60e03a
5 changed files with 634 additions and 555 deletions

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
*.log
*.bit
*.vcd
*.out

View File

@ -0,0 +1,612 @@
`default_nettype none
`timescale 1ns / 1ps
module fifo (
input wire clk,
input wire rst,
input wire [WIDTH - 1:0] data_in,
input wire input_ready,
input wire request_output,
output logic [WIDTH - 1:0] data_out,
output logic output_valid,
output logic [AW:0] size,
output logic empty,
output logic full
);
parameter WIDTH = 8;
parameter DEPTH = 4096;
localparam AW = $clog2(DEPTH);
logic [AW:0] write_pointer;
logic [AW:0] read_pointer;
logic empty_int;
assign empty_int = (write_pointer[AW] == read_pointer[AW]);
logic full_or_empty;
assign full_or_empty = (write_pointer[AW-1:0] == read_pointer[AW-1:0]);
assign full = full_or_empty & !empty_int;
assign empty = full_or_empty & empty_int;
assign size = write_pointer - read_pointer;
logic output_valid_pip_0;
logic output_valid_pip_1;
always @(posedge clk) begin
if (input_ready && ~full)
write_pointer <= write_pointer + 1'd1;
if (request_output && ~empty)
read_pointer <= read_pointer + 1'd1;
output_valid_pip_0 <= request_output;
output_valid_pip_1 <= output_valid_pip_0;
output_valid <= output_valid_pip_1;
if (rst) begin
read_pointer <= 0;
write_pointer <= 0;
end
end
xilinx_true_dual_port_read_first_2_clock_ram #(
.RAM_WIDTH(WIDTH),
.RAM_DEPTH(DEPTH),
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
) buffer (
// write port
.clka(clk),
.rsta(rst),
.ena(1),
.addra(write_pointer),
.dina(data_in),
.wea(input_ready),
.regcea(1),
.douta(),
// read port
.clkb(clk),
.rstb(rst),
.enb(1),
.addrb(read_pointer),
.dinb(),
.web(0),
.regceb(1),
.doutb(data_out));
endmodule
`default_nettype wire
`default_nettype none
`timescale 1ns / 1ps
/*
This ILA was autogenerated on 05/02/2023 10:10:20 by fischerm
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu.
*/
`define IDLE 0
`define ARM 1
`define FILL 2
`define DOWNLINK 3
`define ARM_BYTE 8'b00110000
module ila (
input wire clk,
input wire rst,
/* Begin autogenerated probe definitions */
input wire larry,
input wire curly,
input wire moe,
input wire [2:0] shemp,
/* End autogenerated probe definitions */
input wire rxd,
output logic txd);
/* Begin autogenerated parameters */
localparam SAMPLE_WIDTH = 6;
localparam SAMPLE_DEPTH = 4096;
localparam DATA_WIDTH = 8;
localparam BAUDRATE = 115200;
localparam CLK_FREQ_HZ = 100000000;
logic trigger;
assign trigger = (larry && curly && ~moe);
logic [SAMPLE_WIDTH - 1 : 0] concat;
assign concat = {larry, curly, moe, shemp};;
/* End autogenerated parameters */
// FIFO
logic [7:0] fifo_data_in;
logic fifo_input_ready;
logic fifo_request_output;
logic [7:0] fifo_data_out;
logic fifo_output_valid;
logic [11:0] fifo_size;
logic fifo_empty;
logic fifo_full;
fifo #(
.WIDTH(SAMPLE_WIDTH),
.DEPTH(SAMPLE_DEPTH)
) fifo (
.clk(clk),
.rst(rst),
.data_in(fifo_data_in),
.input_ready(fifo_input_ready),
.request_output(fifo_request_output),
.data_out(fifo_data_out),
.output_valid(fifo_output_valid),
.size(fifo_size),
.empty(fifo_empty),
.full(fifo_full));
// Serial interface
logic tx_start;
logic [7:0] tx_data;
logic tx_busy;
logic [7:0] rx_data;
logic rx_ready;
logic rx_busy;
uart_tx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
tx (
.clk(clk),
.rst(rst),
.start(tx_start),
.data(tx_data),
.busy(tx_busy),
.txd(txd));
uart_rx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
rx (
.clk(clk),
.rst(rst),
.rxd(rxd),
.data(rx_data),
.ready(rx_ready),
.busy(rx_busy));
/* State Machine */
/*
IDLE:
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
- an arm command over serial is what brings us into the ARM state
ARM:
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
- meeting the trigger condition is what moves us into the filing state
FILL:
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
DOWNLINK:
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
*/
/* Downlink State Machine Controller */
/*
- ila enters the downlink state
- set fifo_output_request high for a clock cycle
- when fifo_output_valid goes high, send fifo_data_out across the line
- do nothing until tx_busy goes low
- goto step 2
*/
logic [1:0] state;
logic [2:0] downlink_fsm_state;
always_ff @(posedge clk) begin
if(rst) begin
state <= `IDLE;
downlink_fsm_state <= 0;
tx_data <= 0;
tx_start <= 0;
end
else begin
case (state)
`IDLE : begin
fifo_input_ready <= 0;
fifo_request_output <= 0;
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
end
`ARM : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// remove old samples if we're more than halfway full
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
if(trigger) state <= `FILL;
end
`FILL : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// don't pop anything out the FIFO
fifo_request_output <= 0;
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
end
`DOWNLINK : begin
// place no samples into FIFO
fifo_input_ready <= 0;
case (downlink_fsm_state)
0 : begin
if (~fifo_empty) begin
fifo_request_output <= 1;
downlink_fsm_state <= 1;
end
else state <= `IDLE;
end
1 : begin
fifo_request_output <= 0;
if (fifo_output_valid) begin
tx_data <= fifo_data_out;
tx_start <= 1;
downlink_fsm_state <= 2;
end
end
2 : begin
tx_start <= 0;
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
end
endcase
end
endcase
end
end
endmodule
`default_nettype wire`default_nettype none
`timescale 1ns / 1ps
module uart_tx(
input wire clk,
input wire rst,
input wire [DATA_WIDTH-1:0] data,
input wire start,
output logic busy,
output logic txd
);
// Just going to stick to 8N1 for now, we'll come back and
// parameterize this later.
parameter DATA_WIDTH = 8;
parameter CLK_FREQ_HZ = 100_000_000;
parameter BAUDRATE = 115200;
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
logic [$clog2(PRESCALER) - 1:0] baud_counter;
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
logic [DATA_WIDTH - 1:0] data_buf;
// make secondary logic for baudrate
always_ff @(posedge clk) begin
if(rst) baud_counter <= 0;
else begin
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
end
end
always_ff @(posedge clk) begin
// reset logic
if(rst) begin
bit_index <= 0;
busy <= 0;
txd <= 1; // idle high
end
// enter transmitting state logic
// don't allow new requests to interrupt current
// transfers
if(start && ~busy) begin
busy <= 1;
data_buf <= data;
end
// transmitting state logic
else if(baud_counter == 0 && busy) begin
if (bit_index == 0) begin
txd <= 0;
bit_index <= bit_index + 1;
end
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
txd <= data_buf[bit_index - 1];
bit_index <= bit_index + 1;
end
else if (bit_index == DATA_WIDTH + 1) begin
txd <= 1;
bit_index <= bit_index + 1;
end
else if (bit_index >= DATA_WIDTH + 1) begin
busy <= 0;
bit_index <= 0;
end
end
end
endmodule
`default_nettype wire
// Xilinx True Dual Port RAM, Read First, Dual Clock
// This code implements a parameterizable true dual port memory (both ports can read and write).
// The behavior of this RAM is when data is written, the prior memory contents at the write
// address are presented on the output port. If the output data is
// not needed during writes or the last read value is desired to be retained,
// it is suggested to use a no change RAM as it is more power efficient.
// If a reset or enable is not necessary, it may be tied off or removed from the code.
module xilinx_true_dual_port_read_first_2_clock_ram #(
parameter RAM_WIDTH = 18, // Specify RAM data width
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
) (
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
input clka, // Port A clock
input clkb, // Port B clock
input wea, // Port A write enable
input web, // Port B write enable
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
input rsta, // Port A output reset (does not affect memory contents)
input rstb, // Port B output reset (does not affect memory contents)
input regcea, // Port A output register enable
input regceb, // Port B output register enable
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
);
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
//this loop below allows for rendering with iverilog simulations!
/*
integer idx;
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
wire [RAM_WIDTH-1:0] tmp;
assign tmp = BRAM[idx];
end
*/
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
generate
if (INIT_FILE != "") begin: use_init_file
initial
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
end else begin: init_bram_to_zero
integer ram_index;
initial
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
end
endgenerate
integer idx;
// initial begin
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
// $dumpvars(0, BRAM[idx]);
// end
// end
always @(posedge clka)
if (ena) begin
if (wea)
BRAM[addra] <= dina;
ram_data_a <= BRAM[addra];
end
always @(posedge clkb)
if (enb) begin
if (web)
BRAM[addrb] <= dinb;
ram_data_b <= BRAM[addrb];
end
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
generate
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
assign douta = ram_data_a;
assign doutb = ram_data_b;
end else begin: output_register
// The following is a 2 clock cycle read latency with improve clock-to-out timing
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
always @(posedge clka)
if (rsta)
douta_reg <= {RAM_WIDTH{1'b0}};
else if (regcea)
douta_reg <= ram_data_a;
always @(posedge clkb)
if (rstb)
doutb_reg <= {RAM_WIDTH{1'b0}};
else if (regceb)
doutb_reg <= ram_data_b;
assign douta = douta_reg;
assign doutb = doutb_reg;
end
endgenerate
// The following function calculates the address width based on specified RAM depth
function integer clogb2;
input integer depth;
for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;
endfunction
endmodule
// The following is an instantiation template for xilinx_true_dual_port_read_first_2_clock_ram
/*
// Xilinx True Dual Port RAM, Read First, Dual Clock
xilinx_true_dual_port_read_first_2_clock_ram #(
.RAM_WIDTH(18), // Specify RAM data width
.RAM_DEPTH(1024), // Specify RAM depth (number of entries)
.RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
.INIT_FILE("") // Specify name/location of RAM initialization file if using one (leave blank if not)
) your_instance_name (
.addra(addra), // Port A address bus, width determined from RAM_DEPTH
.addrb(addrb), // Port B address bus, width determined from RAM_DEPTH
.dina(dina), // Port A RAM input data, width determined from RAM_WIDTH
.dinb(dinb), // Port B RAM input data, width determined from RAM_WIDTH
.clka(clka), // Port A clock
.clkb(clkb), // Port B clock
.wea(wea), // Port A write enable
.web(web), // Port B write enable
.ena(ena), // Port A RAM Enable, for additional power savings, disable port when not in use
.enb(enb), // Port B RAM Enable, for additional power savings, disable port when not in use
.rsta(rsta), // Port A output reset (does not affect memory contents)
.rstb(rstb), // Port B output reset (does not affect memory contents)
.regcea(regcea), // Port A output register enable
.regceb(regceb), // Port B output register enable
.douta(douta), // Port A RAM output data, width determined from RAM_WIDTH
.doutb(doutb) // Port B RAM output data, width determined from RAM_WIDTH
);
*/
`default_nettype none
`timescale 1ns / 1ps
module uart_rx(
input wire clk,
input wire rst,
input wire rxd,
output logic [DATA_WIDTH - 1:0] data,
output logic ready,
output logic busy
);
// Just going to stick to 8N1 for now, we'll come back and
// parameterize this later.
parameter DATA_WIDTH = 8;
parameter CLK_FREQ_HZ = 100_000_000;
parameter BAUDRATE = 115200;
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
logic [$clog2(PRESCALER) - 1:0] baud_counter;
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
logic [DATA_WIDTH + 2 : 0] data_buf;
logic prev_rxd;
always_ff @(posedge clk) begin
prev_rxd <= rxd;
ready <= 0;
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
// reset logic
if(rst) begin
bit_index <= 0;
data <= 0;
busy <= 0;
baud_counter <= 0;
end
// start receiving if we see a falling edge, and not already busy
else if (prev_rxd && ~rxd && ~busy) begin
busy <= 1;
data_buf <= 0;
baud_counter <= 0;
end
// if we're actually receiving
else if (busy) begin
if (baud_counter == PRESCALER / 2) begin
data_buf[bit_index] <= rxd;
bit_index <= bit_index + 1;
if (bit_index == DATA_WIDTH + 1) begin
busy <= 0;
bit_index <= 0;
if (rxd && ~data_buf[0]) begin
data <= data_buf[DATA_WIDTH : 1];
ready <= 1;
end
end
end
end
end
endmodule
`default_nettype wire

View File

@ -1,227 +0,0 @@
`default_nettype none
`timescale 1ns / 1ps
/*
This ILA was autogenerated on 03/02/2023 23:13:51 by fischerm
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu.
*/
`define IDLE 0
`define ARM 1
`define FILL 2
`define DOWNLINK 3
`define ARM_BYTE 8'b00110000
module ila (
input wire clk,
input wire rst,
/* Begin autogenerated probe definitions */
input wire larry,
input wire curly,
input wire moe,
input wire [2:0] shemp,
/* End autogenerated probe definitions */
input wire rxd,
output logic txd);
/* Begin autogenerated parameters */
localparam SAMPLE_WIDTH = 6;
localparam SAMPLE_DEPTH = 4096;
localparam DATA_WIDTH = 8;
localparam BAUDRATE = 115200;
localparam CLK_FREQ_HZ = 100000000;
logic trigger;
assign trigger = (larry && curly && ~moe);
logic [SAMPLE_WIDTH - 1 : 0] concat;
assign concat = {larry, curly, moe, shemp};;
/* End autogenerated parameters */
// FIFO
logic [7:0] fifo_data_in;
logic fifo_input_ready;
logic fifo_request_output;
logic [7:0] fifo_data_out;
logic fifo_output_valid;
logic [11:0] fifo_size;
logic fifo_empty;
logic fifo_full;
fifo #(
.WIDTH(SAMPLE_WIDTH),
.DEPTH(SAMPLE_DEPTH)
) fifo (
.clk(clk),
.rst(rst),
.data_in(fifo_data_in),
.input_ready(fifo_input_ready),
.request_output(fifo_request_output),
.data_out(fifo_data_out),
.output_valid(fifo_output_valid),
.size(fifo_size),
.empty(fifo_empty),
.full(fifo_full));
// Serial interface
logic tx_start;
logic [7:0] tx_data;
logic tx_busy;
logic [7:0] rx_data;
logic rx_ready;
logic rx_busy;
uart_tx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
tx (
.clk(clk),
.rst(rst),
.start(tx_start),
.data(tx_data),
.busy(tx_busy),
.txd(txd));
uart_rx #(
.DATA_WIDTH(DATA_WIDTH),
.CLK_FREQ_HZ(CLK_FREQ_HZ),
.BAUDRATE(BAUDRATE))
rx (
.clk(clk),
.rst(rst),
.rxd(rxd),
.data(rx_data),
.ready(rx_ready),
.busy(rx_busy));
/* State Machine */
/*
IDLE:
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
- an arm command over serial is what brings us into the ARM state
ARM:
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
- meeting the trigger condition is what moves us into the filing state
FILL:
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
DOWNLINK:
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
*/
/* Downlink State Machine Controller */
/*
- ila enters the downlink state
- set fifo_output_request high for a clock cycle
- when fifo_output_valid goes high, send fifo_data_out across the line
- do nothing until tx_busy goes low
- goto step 2
*/
logic [1:0] state;
logic [2:0] downlink_fsm_state;
always_ff @(posedge clk) begin
if(rst) begin
state <= `IDLE;
downlink_fsm_state <= 0;
tx_data <= 0;
tx_start <= 0;
end
else begin
case (state)
`IDLE : begin
fifo_input_ready <= 0;
fifo_request_output <= 0;
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
end
`ARM : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// remove old samples if we're more than halfway full
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
if(trigger) state <= `FILL;
end
`FILL : begin
// place samples into FIFO
fifo_input_ready <= 1;
fifo_data_in <= concat;
// don't pop anything out the FIFO
fifo_request_output <= 0;
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
end
`DOWNLINK : begin
// place no samples into FIFO
fifo_input_ready <= 0;
case (downlink_fsm_state)
0 : begin
if (~fifo_empty) begin
fifo_request_output <= 1;
downlink_fsm_state <= 1;
end
else state <= `IDLE;
end
1 : begin
fifo_request_output <= 0;
if (fifo_output_valid) begin
tx_data <= fifo_data_out;
tx_start <= 1;
downlink_fsm_state <= 2;
end
end
2 : begin
tx_start <= 0;
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
end
endcase
end
endcase
end
end
endmodule
`default_nettype wire

324
manta
View File

@ -1,324 +0,0 @@
#!/usr/bin/python3
from sys import argv
import os
import json
import yaml
from datetime import datetime
import serial
debug = True
version = '0.0.0'
downlink_template = ''
def load_config(path):
"""Take path to configuration file, and retun the configuration as a python list/dict object."""
extension = path.split('.')[-1]
if 'json' in extension:
with open(path, 'r') as f:
config = json.load(f)
return config
elif 'yaml' in extension or 'yml' in extension:
with open(path, 'r') as f:
config = yaml.safe_load(f)
return config
else:
raise ValueError('Unable to recognize configuration file extension.')
def check_config(config):
"""Takes a list/dict python object representing a core configuration and throws an error if it is misconfigured."""
assert 'downlink' in config or 'uplink' in config, 'No downlink or uplink specified.'
if 'downlink' in config:
dl = config['downlink']
assert dl['sample_depth'], 'Downlink core specified, but sample_depth not specified.'
assert dl['clock_freq'], 'Downlink core specified, but clock_freq not specified.'
assert dl['probes'] and len(dl['probes']) > 0, 'Downlink core specified, but no probes specified.'
assert dl['triggers'] and len(dl['triggers']) > 0, 'Downlink core specified, but no triggers specified.'
# confirm core clock is sufficiently fast
prescaler = dl['clock_freq'] // config['uart']['baudrate']
assert prescaler >= 2
# confirm actual baudrate and target baudrate are within 5%
actual_baudrate = config['downlink']['clock_freq'] / prescaler
baudrate_error = abs(actual_baudrate - config['uart']['baudrate']) / config['uart']['baudrate']
assert baudrate_error <= 0.05, f'Unable to match target baudrate! Actual baudrate differs from target by {round(100*baudrate_error, 2)}%'
if debug:
print(f'UART interface on debug core will the following configuration:')
print(f' - target_baudrate: {config["uart"]["baudrate"]}')
print(f' - prescaler: {prescaler}')
print(f' - actual_baudrate: {round(actual_baudrate, 2)}')
if 'uplink' in config:
raise NotImplementedError('Cannot check configuration validity for uplinks just yet!')
if 'uart' in config:
uart = config['uart']
# confirm number of data bits is valid
assert 'data' in uart, 'Number of data bits in UART interface not specified.'
assert uart['data'] in [8, 7, 6, 5], 'Invalid number of data bits.'
# confirm number of stop bits is valid
assert uart['stop'] in [1, 1.5, 2], 'Invalid number of stop bits.'
# confirm parity is valid
assert uart['parity'] in ['none', 'even', 'odd', 'mark', 'space'], 'Invalid parity setting.'
def gen_downlink_core(config):
buf = downlink_template
dl = config['downlink']
# add timestamp
timestamp = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
buf = buf.replace('@TIMESTAMP', timestamp)
# add user
user = os.environ.get('USER', os.environ.get('USERNAME'))
buf = buf.replace('@USER', user)
# add trigger
trigger = [f'({trigger})' for trigger in dl['triggers']]
trigger = ' || '.join(trigger)
buf = buf.replace('@TRIGGER', trigger)
# add concat
concat = [name for name in dl['probes']]
concat = ', '.join(concat)
concat = '{' + concat + '};'
buf = buf.replace('@CONCAT', concat)
# add probes
probe_verilog = []
for name, width in dl['probes'].items():
if width == 1:
probe_verilog.append(f'input wire {name},')
else:
probe_verilog.append(f'input wire [{width-1}:0] {name},')
probe_verilog = '\n\t'.join(probe_verilog)
buf = buf.replace('@PROBES', probe_verilog)
# add sample width
sample_width = sum([width for name, width in dl['probes'].items()])
buf = buf.replace('@SAMPLE_WIDTH', sample_width)
# add sample depth
buf = buf.replace('@SAMPLE_DEPTH', dl['sample_depth'])
# uart config
buf = buf.replace('@DATA_WIDTH', str(config['uart']['data']))
buf = buf.replace('@BAUDRATE', str(config['uart']['baudrate']))
buf = buf.replace('@CLK_FREQ_HZ', str(config['uart']['clock_freq']))
return buf
def print_help():
help = f"""
Manta v{version} - An In-Situ Debugging Tool for Programmable Hardware
Supported commands:
gen [config file] generate the core specified in the config file
run [config file] run the core specified in the config file
terminal [config file] present a minicom-like serial terminal with the UART settings in the config file
ports list all available serial ports
help display this help message
ray display a splash screen (hehe...splash screen)
"""
print(help)
def print_ray():
color_ray = f"""
\033[96m (\.-./)
\033[96m / \\
\033[96m .' : '.
\033[96m _.-'` ' `'-._ \033[34;49;1m | Manta v{version} \033[00m
\033[96m .-' : '-. \033[34;49;3m | An In-Situ Debugging Tool for Programmable Hardware\033[00m
\033[96m ,'_.._ . _.._', \033[34;49m | https://github.com/fischermoseley/manta\033[00m
\033[96m '` `'-. ' .-'`
\033[96m '. : .' \033[34;49;3m | fischerm [at] mit.edu\033[00m
\033[96m \_. ._/
\033[96m \ |^|
\033[96m | | ;
\033[96m \\'.___.' /
\033[96m '-....-' \033[00m"""
print(color_ray)
def setup_serial(ser, config):
ser.baudrate = config['uart']['baudrate']
ser.port = config['uart']['port']
ser.timeout = config['uart']['timeout']
# setup number of data bits
if config['uart']['data'] == 8:
ser.bytesize = serial.EIGHTBITS
elif config['uart']['data'] == 7:
ser.bytesize = serial.SEVENBITS
elif config['uart']['data'] == 6:
ser.bytesize = serial.SIXBITS
elif config['uart']['data'] == 5:
ser.bytesize = serial.FIVEBITS
else:
raise ValueError("Invalid number of data bits in UART configuration.")
# setup number of stop bits
if config['uart']['stop'] == 1:
ser.stopbits = serial.STOPBITS_ONE
elif config['uart']['stop'] == 1.5:
ser.stopbits = serial.STOPBITS_ONE_POINT_FIVE
elif config['uart']['stop'] == 2:
ser.stopbits = serial.STOPBITS_TWO
else:
raise ValueError("Invalid number of stop bits in UART configuration.")
# setup parity
if config['uart']['parity'] == 'none':
ser.parity = serial.PARITY_NONE
elif config['uart']['parity'] == 'even':
ser.parity = serial.PARITY_EVEN
elif config['uart']['parity'] == 'odd':
ser.parity = serial.PARITY_ODD
elif config['uart']['parity'] == 'mark':
ser.parity = serial.PARITY_MARK
elif config['uart']['parity'] == 'space':
ser.parity = serial.PARITY_SPACE
else:
raise ValueError("Invalid parity setting in UART configuration.")
def read_serial(config):
# obtain bytestream from FPGA
with serial.Serial() as ser:
setup_serial(ser, config)
ser.open()
ser.flushInput()
ser.write(b'\x30')
data = ser.read(4096)
return data
def part_select(data, width):
top, bottom = width
assert top >= bottom
mask = 2**(top - bottom + 1) - 1
return (data >> bottom) & mask
def make_widths(config):
# {probe0, probe1, probe2}
# [12, 1, 3] should produce
# [ (11,0) , (12, 12), (15,13) ]
widths = list(config['probes'].values())
parts = []
for i, width in enumerate(widths):
if (i == 0):
parts.append( (width - 1, 0) )
else:
parts.append( ((parts[i-1][1] + width) , (parts[i-1][1] + 1)) )
# reversing this list is a little bit of a hack, should fix/document
return parts[::-1]
def export_waveform(config, data, path):
extension = path.split('.')[-1]
if extension == 'vcd':
from vcd import VCDWriter
vcd_file = open(path, 'w')
timestamp = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
with VCDWriter(vcd_file, timescale='10 ns', date=timestamp, version = 'manta') as writer:
# add probes to vcd file
vcd_probes = []
for name, width in config['probes'].items():
probe = writer.register_var('ila', name, 'wire', size = width)
vcd_probes.append(probe)
# calculate bit widths for part selecting
widths = make_widths(config)
# slice data, and dump to vcd file
for timestamp, value in enumerate(data):
for probe_num, probe in enumerate(vcd_probes):
val = part_select(value, widths[probe_num])
writer.change(probe, timestamp, val)
vcd_file.close()
else:
raise NotImplementedError('More file formats to come!')
if __name__ == '__main__':
# print help menu if no args passed or help menu requested
if len(argv) == 1 or argv[1] == 'help':
print_help()
exit()
# open minicom-like serial terminal with given config
elif argv[1] == 'terminal':
assert len(argv) == 3, 'Not enough (or too many) config files specified.'
# TODO: make this work with a looser config file - it should work even if we just have a uart definition
config = load_config(argv[2])
check_config(config)
raise NotImplementedError('Miniterm console is still under development!')
# list available serial ports
elif argv[1] == 'ports':
import serial.tools.list_ports
for info in serial.tools.list_ports.comports():
print(info)
# show splash screen
elif argv[1] == 'ray':
print_ray()
exit()
# generate the specified core
elif argv[1] == 'gen':
assert len(argv) == 4, 'Wrong number of arguments, only a config file and output file must both be specified.'
config = load_config(argv[2])
check_config(config)
with open(argv[3], 'w') as f:
f.write(gen_downlink_core(config))
# run the specified core
elif argv[1] == 'run':
assert len(argv) == 4, 'Wrong number of arguments, only a config file and output file must both be specified.'
config = load_config(argv[2])
check_config(config)
data = read_serial(config)
export_waveform(config, data, argv[3])
else:
print('Option not recognized.')
print_help()

View File

@ -5,9 +5,25 @@ import yaml
from datetime import datetime
import serial
debug = True
version = '0.0.0'
downlink_template = ''
def load_source_files(path):
"""concatenates the list of files provided into a single string"""
source_files = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
source_files = [f for f in source_files if f.split('.')[-1] in ['sv', 'v']]
buf = ""
for source_file in source_files:
with open(path + source_file, 'r') as f:
buf += f.read()
return buf
downlink_template = load_source_files('src/')
def load_config(path):
"""Take path to configuration file, and retun the configuration as a python list/dict object."""
@ -109,15 +125,15 @@ def gen_downlink_core(config):
# add sample width
sample_width = sum([width for name, width in dl['probes'].items()])
buf = buf.replace('@SAMPLE_WIDTH', sample_width)
buf = buf.replace('@SAMPLE_WIDTH', str(sample_width))
# add sample depth
buf = buf.replace('@SAMPLE_DEPTH', dl['sample_depth'])
buf = buf.replace('@SAMPLE_DEPTH', str(dl['sample_depth']))
# uart config
buf = buf.replace('@DATA_WIDTH', str(config['uart']['data']))
buf = buf.replace('@BAUDRATE', str(config['uart']['baudrate']))
buf = buf.replace('@CLK_FREQ_HZ', str(config['uart']['clock_freq']))
buf = buf.replace('@CLK_FREQ_HZ', str(dl['clock_freq']))
return buf