clean up inferred BRAM, trim whitespace

This commit is contained in:
Fischer Moseley 2023-04-03 21:20:36 -04:00
parent aab1b5ac10
commit ce41d7ec41
3 changed files with 112 additions and 182 deletions

View File

@ -3,13 +3,13 @@ cores:
my_logic_analyzer:
type: logic_analyzer
sample_depth: 4096
probes:
larry: 1
curly: 1
moe: 1
shemp: 4
triggers:
- larry && curly && ~moe

View File

@ -2,7 +2,7 @@
`timescale 1ns/1ps
/*
This manta definition was generated on 02 Apr 2023 at 22:05:41 by fischerm
This manta definition was generated on 03 Apr 2023 at 21:11:41 by fischerm
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu
@ -55,7 +55,7 @@ module manta (
.wdata_o(brx_my_logic_analyzer_wdata),
.rw_o(brx_my_logic_analyzer_rw),
.valid_o(brx_my_logic_analyzer_valid));
reg [15:0] brx_my_logic_analyzer_addr;
reg [15:0] brx_my_logic_analyzer_wdata;
reg brx_my_logic_analyzer_rw;
@ -212,7 +212,7 @@ module rx_uart(
state <= IDLE;
baud_counter <= 0;
end
end
end
else baud_counter <= baud_counter - 1'b1;
@ -368,7 +368,7 @@ endmodule
module logic_analyzer(
input wire clk,
// probes
// probes
input wire larry,
input wire curly,
input wire moe,
@ -413,7 +413,7 @@ module logic_analyzer(
.rdata_o(fsm_trig_blk_rdata),
.rw_o(fsm_trig_blk_rw),
.valid_o(fsm_trig_blk_valid));
reg [15:0] fsm_trig_blk_addr;
reg [15:0] fsm_trig_blk_wdata;
reg [15:0] fsm_trig_blk_rdata;
@ -425,19 +425,19 @@ module logic_analyzer(
reg fifo_acquire;
reg fifo_pop;
reg fifo_clear;
// trigger block
trigger_block #(.BASE_ADDR(BASE_ADDR + 2)) trig_blk(
trigger_block #(.BASE_ADDR(BASE_ADDR + 3)) trig_blk(
.clk(clk),
.larry(larry),
.curly(curly),
.moe(moe),
.shemp(shemp),
.trig(trig),
.addr_i(fsm_trig_blk_addr),
.wdata_i(fsm_trig_blk_wdata),
.rdata_i(fsm_trig_blk_rdata),
@ -457,7 +457,7 @@ module logic_analyzer(
reg trig_blk_sample_mem_valid;
// sample memory
sample_mem #(.BASE_ADDR(BASE_ADDR + 10), .SAMPLE_DEPTH(SAMPLE_DEPTH)) sample_mem(
sample_mem #(.BASE_ADDR(BASE_ADDR + 11), .SAMPLE_DEPTH(SAMPLE_DEPTH)) sample_mem(
.clk(clk),
// fifo
@ -555,7 +555,7 @@ module la_fsm(
case (addr_i)
BASE_ADDR + 0: state <= wdata_i;
BASE_ADDR + 1: trigger_loc <= wdata_i;
BASE_ADDR + 2: present_loc <= wdata_i;
//BASE_ADDR + 2: present_loc <= wdata_i;
endcase
end
end
@ -609,6 +609,12 @@ module la_fsm(
present_loc <= (trigger_loc < 0) ? trigger_loc : 0;
end
// return to IDLE state if somehow we get to a state that doesn't exist
else begin
state <= IDLE;
end
end
endmodule
@ -647,17 +653,17 @@ module sample_mem(
parameter BASE_ADDR = 0;
parameter SAMPLE_DEPTH = 0;
localparam BRAM_ADDR_WIDTH = $clog2(SAMPLE_DEPTH);
// bus controller
reg [BRAM_ADDR_WIDTH-1:0] bram_read_addr;
reg [15:0] bram_read_data;
always @(*) begin
// if address is valid
if ( (addr_i >= BASE_ADDR) && (addr_i <= BASE_ADDR + SAMPLE_DEPTH) ) begin
// figure out proper place to read from
// want to read from the read pointer, and then loop back around
// want to read from the read pointer, and then loop back around
if(read_pointer + (addr_i - BASE_ADDR) > SAMPLE_DEPTH)
bram_read_addr = read_pointer + (addr_i - BASE_ADDR) - SAMPLE_DEPTH;
@ -693,33 +699,24 @@ module sample_mem(
rdata_o <= bram_read_data;
end
// bram
xilinx_true_dual_port_read_first_2_clock_ram #(
dual_port_bram #(
.RAM_WIDTH(16),
.RAM_DEPTH(SAMPLE_DEPTH),
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
.RAM_DEPTH(SAMPLE_DEPTH)
) bram (
// read port (controlled by bus)
.clka(clk),
.rsta(1'b0),
.ena(1'b1),
.addra(bram_read_addr),
.dina(16'b0),
.wea(1'b0),
.regcea(1'b1),
.douta(bram_read_data),
// write port (controlled by FIFO)
.clkb(clk),
.rstb(1'b0),
.enb(1'b1),
.addrb(write_pointer[BRAM_ADDR_WIDTH-1:0]),
.dinb({9'b0, larry, curly, moe, shemp}),
.web(acquire),
.regceb(1'b1),
.doutb());
@ -745,131 +742,59 @@ endmodule
// it is suggested to use a no change RAM as it is more power efficient.
// If a reset or enable is not necessary, it may be tied off or removed from the code.
`default_nettype wire
// Modified from the xilinx_true_dual_port_read_first_2_clock_ram verilog language template.
module xilinx_true_dual_port_read_first_2_clock_ram #(
parameter RAM_WIDTH = 18, // Specify RAM data width
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
) (
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
input clka, // Port A clock
input clkb, // Port B clock
input wea, // Port A write enable
input web, // Port B write enable
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
input rsta, // Port A output reset (does not affect memory contents)
input rstb, // Port B output reset (does not affect memory contents)
input regcea, // Port A output register enable
input regceb, // Port B output register enable
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
);
module dual_port_bram #(
parameter RAM_WIDTH = 0, // Specify RAM data width
parameter RAM_DEPTH = 0 // Specify RAM depth (number of entries)
) (
input wire [$clog2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
input wire [$clog2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
input wire [RAM_WIDTH-1:0] dina, // Port A RAM input data
input wire [RAM_WIDTH-1:0] dinb, // Port B RAM input data
input wire clka, // Port A clock
input wire clkb, // Port B clock
input wire wea, // Port A write enable
input wire web, // Port B write enable
output wire [RAM_WIDTH-1:0] douta, // Port A RAM output data
output wire [RAM_WIDTH-1:0] doutb // Port B RAM output data
);
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
//this loop below allows for rendering with iverilog simulations!
/*
integer idx;
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
wire [RAM_WIDTH-1:0] tmp;
assign tmp = BRAM[idx];
end
*/
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
generate
if (INIT_FILE != "") begin: use_init_file
initial
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
end else begin: init_bram_to_zero
integer ram_index;
initial
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
end
endgenerate
integer idx;
// initial begin
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
// $dumpvars(0, BRAM[idx]);
// end
// end
always @(posedge clka)
if (ena) begin
if (wea)
BRAM[addra] <= dina;
ram_data_a <= BRAM[addra];
always @(posedge clka) begin
if (wea) BRAM[addra] <= dina;
ram_data_a <= BRAM[addra];
end
always @(posedge clkb)
if (enb) begin
if (web)
BRAM[addrb] <= dinb;
ram_data_b <= BRAM[addrb];
always @(posedge clkb) begin
if (web) BRAM[addrb] <= dinb;
ram_data_b <= BRAM[addrb];
end
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
generate
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
// The following is a 2 clock cycle read latency with improve clock-to-out timing
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
assign douta = ram_data_a;
assign doutb = ram_data_b;
end else begin: output_register
// The following is a 2 clock cycle read latency with improve clock-to-out timing
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
always @(posedge clka)
if (rsta)
douta_reg <= {RAM_WIDTH{1'b0}};
else if (regcea)
douta_reg <= ram_data_a;
always @(posedge clkb)
if (rstb)
doutb_reg <= {RAM_WIDTH{1'b0}};
else if (regceb)
doutb_reg <= ram_data_b;
assign douta = douta_reg;
assign doutb = doutb_reg;
end
endgenerate
// The following function calculates the address width based on specified RAM depth
function integer clogb2;
input integer depth;
for (clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;
endfunction
always @(posedge clka) douta_reg <= ram_data_a;
always @(posedge clkb) doutb_reg <= ram_data_b;
assign douta = douta_reg;
assign doutb = doutb_reg;
endmodule
`default_nettype none
module trigger_block(
module trigger_block (
input wire clk,
// probes
input wire larry,
input wire curly,
input wire moe,
input wire [3:0] shemp,
input wire curly,
input wire moe,
input wire [3:0] shemp,
// trigger
output reg trig,
@ -889,55 +814,60 @@ module trigger_block(
output reg valid_o);
parameter BASE_ADDR = 0;
localparam MAX_ADDR = 7;
// trigger configuration registers
// - each probe gets an operation and a compare register
// - at the end we OR them all together. along with any custom probes the user specs
reg [3:0] larry_trigger_op = 0;
reg larry_trigger_arg = 0;
reg larry_trig;
trigger #(.INPUT_WIDTH(1)) larry_trigger(
reg larry_trigger_arg = 0;
reg larry_trig;
trigger #(.INPUT_WIDTH(1)) larry_trigger (
.clk(clk),
.probe(larry),
.op(larry_trigger_op),
.arg(larry_trigger_arg),
.trig(larry_trig));
.trig(larry_trig)
);
reg [3:0] curly_trigger_op = 0;
reg curly_trigger_arg = 0;
reg curly_trig;
trigger #(.INPUT_WIDTH(1)) curly_trigger(
reg curly_trigger_arg = 0;
reg curly_trig;
trigger #(.INPUT_WIDTH(1)) curly_trigger (
.clk(clk),
.probe(curly),
.op(curly_trigger_op),
.arg(curly_trigger_arg),
.trig(curly_trig));
.trig(curly_trig)
);
reg [3:0] moe_trigger_op = 0;
reg moe_trigger_arg = 0;
reg moe_trig;
trigger #(.INPUT_WIDTH(1)) moe_trigger(
reg moe_trigger_arg = 0;
reg moe_trig;
trigger #(.INPUT_WIDTH(1)) moe_trigger (
.clk(clk),
.probe(moe),
.op(moe_trigger_op),
.arg(moe_trigger_arg),
.trig(moe_trig));
.trig(moe_trig)
);
reg [3:0] shemp_trigger_op = 0;
reg [3:0] shemp_trigger_arg = 0;
reg shemp_trig;
trigger #(.INPUT_WIDTH(4)) shemp_trigger(
reg [3:0] shemp_trigger_arg = 0;
reg shemp_trig;
trigger #(.INPUT_WIDTH(4)) shemp_trigger (
.clk(clk),
.probe(shemp),
.op(shemp_trigger_op),
.arg(shemp_trigger_arg),
.trig(shemp_trig));
.trig(shemp_trig)
);
assign trig = larry_trig || curly_trig || moe_trig || shemp_trig;
@ -950,19 +880,19 @@ module trigger_block(
valid_o <= valid_i;
rdata_o <= rdata_i;
if( (addr_i >= BASE_ADDR) && (addr_i <= BASE_ADDR + 9) ) begin
if( (addr_i >= BASE_ADDR) && (addr_i <= BASE_ADDR + MAX_ADDR) ) begin
// reads
if(valid_i && !rw_i) begin
case (addr_i)
BASE_ADDR + 0: rdata_o <= larry_trigger_op;
BASE_ADDR + 1: rdata_o <= larry_trigger_arg;
BASE_ADDR + 2: rdata_o <= curly_trigger_op;
BASE_ADDR + 3: rdata_o <= curly_trigger_arg;
BASE_ADDR + 4: rdata_o <= moe_trigger_op;
BASE_ADDR + 5: rdata_o <= moe_trigger_arg;
BASE_ADDR + 6: rdata_o <= shemp_trigger_op;
BASE_ADDR + 7: rdata_o <= shemp_trigger_arg;
BASE_ADDR + 1: rdata_o <= larry_trigger_arg;
BASE_ADDR + 2: rdata_o <= curly_trigger_op;
BASE_ADDR + 3: rdata_o <= curly_trigger_arg;
BASE_ADDR + 4: rdata_o <= moe_trigger_op;
BASE_ADDR + 5: rdata_o <= moe_trigger_arg;
BASE_ADDR + 6: rdata_o <= shemp_trigger_op;
BASE_ADDR + 7: rdata_o <= shemp_trigger_arg;
endcase
end
@ -970,13 +900,13 @@ module trigger_block(
else if(valid_i && rw_i) begin
case (addr_i)
BASE_ADDR + 0: larry_trigger_op <= wdata_i;
BASE_ADDR + 1: larry_trigger_arg <= wdata_i;
BASE_ADDR + 2: curly_trigger_op <= wdata_i;
BASE_ADDR + 3: curly_trigger_arg <= wdata_i;
BASE_ADDR + 4: moe_trigger_op <= wdata_i;
BASE_ADDR + 5: moe_trigger_arg <= wdata_i;
BASE_ADDR + 6: shemp_trigger_op <= wdata_i;
BASE_ADDR + 7: shemp_trigger_arg <= wdata_i;
BASE_ADDR + 1: larry_trigger_arg <= wdata_i;
BASE_ADDR + 2: curly_trigger_op <= wdata_i;
BASE_ADDR + 3: curly_trigger_arg <= wdata_i;
BASE_ADDR + 4: moe_trigger_op <= wdata_i;
BASE_ADDR + 5: moe_trigger_arg <= wdata_i;
BASE_ADDR + 6: shemp_trigger_op <= wdata_i;
BASE_ADDR + 7: shemp_trigger_arg <= wdata_i;
endcase
end
end
@ -988,7 +918,7 @@ endmodule
module trigger(
input wire clk,
input wire [INPUT_WIDTH-1:0] probe,
input wire [3:0] op,
input wire [INPUT_WIDTH-1:0] arg,
@ -1023,7 +953,7 @@ module trigger(
LEQ: trig = (probe <= arg);
EQ: trig = (probe == arg);
NEQ: trig = (probe != arg);
default: trig = 0;
default: trig = 0;
endcase
end
endmodule
@ -1054,7 +984,7 @@ logic [3:0] byte_counter;
initial begin
busy = 0;
buffer = 0;
byte_counter = 0;
byte_counter = 0;
valid_o = 0;
end
@ -1072,7 +1002,7 @@ always @(posedge clk) begin
if(ready_i) begin
byte_counter <= byte_counter + 1;
if (byte_counter > 5) begin
byte_counter <= 0;
@ -1090,7 +1020,7 @@ always @(*) begin
case (byte_counter)
0: data_o = PREAMBLE;
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
5: data_o = CR;
@ -1106,7 +1036,7 @@ endmodule
module uart_tx(
input wire clk,
input wire [7:0] data,
input wire valid,
output reg busy,
@ -1114,7 +1044,7 @@ module uart_tx(
output reg tx);
// this transmitter only works with 8N1 serial, at configurable baudrate
// this transmitter only works with 8N1 serial, at configurable baudrate
parameter CLOCKS_PER_BAUD = 868;
reg [9:0] baud_counter;
@ -1160,7 +1090,7 @@ module uart_tx(
busy <= 0;
ready <= 1;
end
// if valid happens here then we should bool
// if valid happens here then we should bool
end
else begin
@ -1171,7 +1101,7 @@ module uart_tx(
end
end
endmodule

View File

@ -26,7 +26,7 @@ module top_level (
.larry(larry),
.curly(curly),
.moe(moe),
.shemp(shemp));
.shemp(shemp));
endmodule