add icestick lut_ram example

This commit is contained in:
Fischer Moseley 2023-04-03 21:30:59 -04:00
parent aec2850280
commit c5ceccc980
6 changed files with 660 additions and 0 deletions

View File

@ -0,0 +1,6 @@
#!/bin/bash
yosys -p 'synth_ice40 -top top_level -json top_level.json' top_level.sv
nextpnr-ice40 --hx1k --json top_level.json --pcf top_level.pcf --asc top_level.asc
icepack top_level.asc top_level.bin
rm -f *.json
rm -f *.asc

View File

@ -0,0 +1,545 @@
`default_nettype none
`timescale 1ns/1ps
/*
This manta definition was generated on 03 Apr 2023 at 21:24:28 by fischerm
If this breaks or if you've got dank formal verification memes,
please contact fischerm [at] mit.edu
Provided under a GNU GPLv3 license. Go wild.
Here's an example instantiation of the Manta module you configured,
feel free to copy-paste this into your source!
manta manta_inst (
.clk(clk),
.rx(rx),
.tx(tx));
*/
module manta (
input wire clk,
input wire rx,
output reg tx);
rx_uart #(.CLOCKS_PER_BAUD(868)) urx (
.i_clk(clk),
.i_uart_rx(rx),
.o_wr(urx_brx_axiv),
.o_data(urx_brx_axid));
logic [7:0] urx_brx_axid;
logic urx_brx_axiv;
bridge_rx brx (
.clk(clk),
.rx_data(urx_brx_axid),
.rx_valid(urx_brx_axiv),
.addr_o(brx_my_lut_ram_addr),
.wdata_o(brx_my_lut_ram_wdata),
.rw_o(brx_my_lut_ram_rw),
.valid_o(brx_my_lut_ram_valid));
reg [15:0] brx_my_lut_ram_addr;
reg [15:0] brx_my_lut_ram_wdata;
reg brx_my_lut_ram_rw;
reg brx_my_lut_ram_valid;
lut_ram #(.DEPTH(64)) my_lut_ram (
.clk(clk),
.addr_i(brx_my_lut_ram_addr),
.wdata_i(brx_my_lut_ram_wdata),
.rdata_i(),
.rw_i(brx_my_lut_ram_rw),
.valid_i(brx_my_lut_ram_valid),
.addr_o(),
.wdata_o(),
.rdata_o(my_lut_ram_btx_rdata),
.rw_o(my_lut_ram_btx_rw),
.valid_o(my_lut_ram_btx_valid));
reg [15:0] my_lut_ram_btx_rdata;
reg my_lut_ram_btx_rw;
reg my_lut_ram_btx_valid;
bridge_tx btx (
.clk(clk),
.rdata_i(my_lut_ram_btx_rdata),
.rw_i(my_lut_ram_btx_rw),
.valid_i(my_lut_ram_btx_valid),
.ready_i(utx_btx_ready),
.data_o(btx_utx_data),
.valid_o(btx_utx_valid));
logic utx_btx_ready;
logic btx_utx_valid;
logic [7:0] btx_utx_data;
uart_tx #(.CLOCKS_PER_BAUD(868)) utx (
.clk(clk),
.data(btx_utx_data),
.valid(btx_utx_valid),
.ready(utx_btx_ready),
.tx(tx));
endmodule
/* ---- Module Definitions ---- */
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rxuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Receives a character from a UART (serial port) wire. Key
// features of this core include:
//
// - The baud rate is constant, and set by the CLOCKS_PER_BAUD parameter.
// To be successful, one baud interval must be (approximately)
// equal to CLOCKS_PER_BAUD / CLOCK_RATE_HZ seconds long.
//
// - The protocol used is the basic 8N1: 8 data bits, 1 stop bit, and no
// parity.
//
// - This core has no reset
// - This core has no error detection for frame errors
// - This core cannot detect, report, or even recover from, a break
// condition on the line. A break condition is defined as a
// period of time where the i_uart_rx line is held low for longer
// than one data byte (10 baud intervals)
//
// - There's no clock rate detection in this core
//
// Perhaps one of the nicer features of this core is that it (can be)
// formally verified. It depends upon a separate (formally verified)
// transmit core for this purpose.
//
// As with the other cores within this tutorial, there may (or may not) be
// bugs within this design for you to find.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
module rx_uart(
input wire i_clk,
input wire i_uart_rx,
output reg o_wr,
output reg [7:0] o_data);
parameter [15:0] CLOCKS_PER_BAUD = 868;
localparam [3:0] IDLE = 4'h0;
localparam [3:0] BIT_ZERO = 4'h1;
// localparam [3:0] BIT_ONE = 4'h2;
// localparam [3:0] BIT_TWO = 4'h3;
// localparam [3:0] BIT_THREE = 4'h4;
// localparam [3:0] BIT_FOUR = 4'h5;
// localparam [3:0] BIT_FIVE = 4'h6;
// localparam [3:0] BIT_SIX = 4'h7;
// localparam [3:0] BIT_SEVEN = 4'h8;
localparam [3:0] STOP_BIT = 4'h9;
reg [3:0] state;
reg [15:0] baud_counter;
reg zero_baud_counter;
// 2FF Synchronizer
//
reg ck_uart;
reg q_uart;
initial { ck_uart, q_uart } = -1;
always @(posedge i_clk)
{ ck_uart, q_uart } <= { q_uart, i_uart_rx };
initial state = IDLE;
initial baud_counter = 0;
always @(posedge i_clk)
if (state == IDLE) begin
state <= IDLE;
baud_counter <= 0;
if (!ck_uart) begin
state <= BIT_ZERO;
baud_counter <= CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2-1'b1;
end
end
else if (zero_baud_counter) begin
state <= state + 1;
baud_counter <= CLOCKS_PER_BAUD-1'b1;
if (state == STOP_BIT) begin
state <= IDLE;
baud_counter <= 0;
end
end
else baud_counter <= baud_counter - 1'b1;
always @(*)
zero_baud_counter = (baud_counter == 0);
always @(posedge i_clk)
if ((zero_baud_counter)&&(state != STOP_BIT))
o_data <= { ck_uart, o_data[7:1] };
initial o_wr = 1'b0;
always @(posedge i_clk)
o_wr <= ((zero_baud_counter)&&(state == STOP_BIT));
endmodule
module bridge_rx(
input wire clk,
input wire[7:0] rx_data,
input wire rx_valid,
output reg[15:0] addr_o,
output reg[15:0] wdata_o,
output reg rw_o,
output reg valid_o
);
// this is a hack, the FSM needs to be updated
// but this will bypass it for now
parameter ready_i = 1;
parameter ADDR_WIDTH = 0;
parameter DATA_WIDTH = 0;
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
localparam ACQUIRE = 0;
localparam TRANSMIT = 1;
localparam ERROR = 2;
reg [1:0] state;
reg [3:0] bytes_received;
// no global resets!
initial begin
addr_o = 0;
wdata_o = 0;
rw_o = 0;
valid_o = 0;
bytes_received = 0;
state = ACQUIRE;
end
reg [3:0] rx_data_decoded;
reg rx_data_is_0_thru_9;
reg rx_data_is_A_thru_F;
always @(*) begin
rx_data_is_0_thru_9 = (rx_data >= 8'h30) & (rx_data <= 8'h39);
rx_data_is_A_thru_F = (rx_data >= 8'h41) & (rx_data <= 8'h46);
if (rx_data_is_0_thru_9) rx_data_decoded = rx_data - 8'h30;
else if (rx_data_is_A_thru_F) rx_data_decoded = rx_data - 8'h41 + 'd10;
else rx_data_decoded = 0;
end
always @(posedge clk) begin
if (state == ACQUIRE) begin
if(rx_valid) begin
if (bytes_received == 0) begin
if(rx_data == PREAMBLE) bytes_received <= 1;
end
else if( (bytes_received >= 1) & (bytes_received <= 4) ) begin
// only advance if byte is valid hex digit
if(rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
addr_o <= (addr_o << 4) | rx_data_decoded;
bytes_received <= bytes_received + 1;
end
else state <= ERROR;
end
else if( bytes_received == 5) begin
if( (rx_data == CR) | (rx_data == LF)) begin
valid_o <= 1;
rw_o = 0;
bytes_received <= 0;
state <= TRANSMIT;
end
else if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
bytes_received <= bytes_received + 1;
wdata_o <= (wdata_o << 4) | rx_data_decoded;
end
else state <= ERROR;
end
else if ( (bytes_received >= 6) & (bytes_received <= 8) ) begin
if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
wdata_o <= (wdata_o << 4) | rx_data_decoded;
bytes_received <= bytes_received + 1;
end
else state <= ERROR;
end
else if (bytes_received == 9) begin
bytes_received <= 0;
if( (rx_data == CR) | (rx_data == LF)) begin
valid_o <= 1;
rw_o <= 1;
state <= TRANSMIT;
end
else state <= ERROR;
end
end
end
else if (state == TRANSMIT) begin
if(ready_i) begin
valid_o <= 0;
state <= ACQUIRE;
end
if(rx_valid) begin
if ( (rx_data != CR) & (rx_data != LF)) begin
valid_o <= 0;
state <= ERROR;
end
end
end
end
endmodule
module lut_ram(
input wire clk,
// input port
input wire [15:0] addr_i,
input wire [15:0] wdata_i,
input wire [15:0] rdata_i,
input wire rw_i,
input wire valid_i,
// output port
output reg [15:0] addr_o,
output reg [15:0] wdata_o,
output reg [15:0] rdata_o,
output reg rw_o,
output reg valid_o
);
parameter DEPTH = 8;
parameter BASE_ADDR = 0;
parameter READ_ONLY = 0;
reg [DEPTH-1:0][15:0] mem;
always @(posedge clk) begin
addr_o <= addr_i;
wdata_o <= wdata_i;
rdata_o <= rdata_i;
rw_o <= rw_i;
valid_o <= valid_i;
rdata_o <= rdata_i;
if(valid_i) begin
// check if address is valid
if( (addr_i >= BASE_ADDR) && (addr_i <= BASE_ADDR + DEPTH - 1) ) begin
// read/write
if (rw_i && !READ_ONLY) mem[addr_i - BASE_ADDR] <= wdata_i;
else rdata_o <= mem[addr_i - BASE_ADDR];
end
end
end
endmodule
module bridge_tx(
input wire clk,
input wire [15:0] rdata_i,
input wire rw_i,
input wire valid_i,
output reg [7:0] data_o,
input wire ready_i,
output reg valid_o);
localparam PREAMBLE = 8'h4D;
localparam CR = 8'h0D;
localparam LF = 8'h0A;
logic busy;
logic [15:0] buffer;
logic [3:0] byte_counter;
initial begin
busy = 0;
buffer = 0;
byte_counter = 0;
valid_o = 0;
end
always @(posedge clk) begin
if (!busy) begin
if (valid_i && !rw_i) begin
busy <= 1;
buffer <= rdata_i;
byte_counter <= 0;
valid_o <= 1;
end
end
if (busy) begin
if(ready_i) begin
byte_counter <= byte_counter + 1;
if (byte_counter > 5) begin
byte_counter <= 0;
// stop transmitting if we don't have both valid and read
if ( !(valid_i && !rw_i) ) begin
busy <= 0;
valid_o <= 0;
end
end
end
end
end
always @(*) begin
case (byte_counter)
0: data_o = PREAMBLE;
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
5: data_o = CR;
6: data_o = LF;
default: data_o = 0;
endcase
end
endmodule
module uart_tx(
input wire clk,
input wire [7:0] data,
input wire valid,
output reg busy,
output reg ready,
output reg tx);
// this transmitter only works with 8N1 serial, at configurable baudrate
parameter CLOCKS_PER_BAUD = 868;
reg [9:0] baud_counter;
reg [8:0] data_buf;
reg [3:0] bit_index;
initial begin
baud_counter = CLOCKS_PER_BAUD;
data_buf = 0;
bit_index = 0;
busy = 0;
ready = 1;
tx = 1;
end
always @(posedge clk) begin
if (valid && !busy) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0; //wafflestomp that start bit
baud_counter <= CLOCKS_PER_BAUD - 1;
busy <= 1;
ready <= 0;
end
else if (busy) begin
baud_counter <= baud_counter - 1;
ready <= (baud_counter == 1) && (bit_index == 9);
if (baud_counter == 0) begin
baud_counter <= CLOCKS_PER_BAUD - 1;
if (bit_index == 9) begin
if(valid) begin
data_buf <= {1'b1, data};
bit_index <= 0;
tx <= 0;
end
else begin
busy <= 0;
ready <= 1;
end
// if valid happens here then we should bool
end
else begin
tx <= data_buf[bit_index];
bit_index <= bit_index + 1;
end
end
end
end
endmodule
`default_nettype wire

View File

@ -0,0 +1,10 @@
---
cores:
my_lut_ram:
type: lut_ram
size: 64
uart:
port: "auto"
baudrate: 115200
clock_freq: 100000000

View File

@ -0,0 +1,12 @@
from manta import Manta
from random import randint
m = Manta('manta.yaml')
for addr in range(m.my_lut_ram.size):
write_data = randint(0, (2**16)-1)
m.my_lut_ram.write(addr, write_data)
read_data = m.my_lut_ram.read(addr)
print(f"test addr: {addr} with data: {write_data}")
print(f" -> correct data received on readback?: {write_data == read_data}")

View File

@ -0,0 +1,67 @@
# Generic iCEstick placement constraints file
# Red LEDs
#set_io LED0 99
#set_io LED1 98
#set_io LED2 97
#set_io LED3 96
# Green LED
#set_io LED4 95
# IrDA port
#set_io RXD 106
#set_io TXD 105
#set_io SD 107
# Pmod connector
#set_io PIO1_02 78 # Pin 1
#set_io PIO1_03 79 # Pin 2
#set_io PIO1_04 80 # Pin 3
#set_io PIO1_05 81 # Pin 4
#set_io PIO1_06 87 # Pin 7
#set_io PIO1_07 88 # Pin 8
#set_io PIO1_08 90 # Pin 9
#set_io PIO1_09 91 # Pin 10
# Connector J1
#set_io PIO0_02 112 # Pin 3
#set_io PIO0_03 113 # Pin 4
#set_io PIO0_04 114 # Pin 5
#set_io PIO0_05 115 # Pin 6
#set_io PIO0_06 116 # Pin 7
#set_io PIO0_07 117 # Pin 8
#set_io PIO0_08 118 # Pin 9
#set_io PIO0_09 119 # Pin 10
# Connector J3
#set_io PIO2_17 62 # Pin 3
#set_io PIO2_16 61 # Pin 4
#set_io PIO2_15 60 # Pin 5
#set_io PIO2_14 56 # Pin 6
#set_io PIO2_13 48 # Pin 7
#set_io PIO2_12 47 # Pin 8
#set_io PIO2_11 45 # Pin 9
#set_io PIO2_10 44 # Pin 10
# FTDI Port B UART
#set_io DCDn 1
#set_io DSRn 2
#set_io DTRn 3
#set_io CTSn 4
#set_io RTSn 7
set_io rs232_tx_ttl 8
set_io rs232_rx_ttl 9
# SPI
#set_io SPI_SCK 70
#set_io SPI_SI 68
#set_io SPI_SO 67
#set_io SPI_SS_B 71
# Configuration pins
#set_io CDONE 65
#set_io CRESET_B 66
# 12 MHz clock
set_io clk 21

View File

@ -0,0 +1,20 @@
`default_nettype none
`timescale 1ns / 1ps
`include "manta.v"
module top_level (
input wire clk,
input wire rs232_rx_ttl,
output logic rs232_tx_ttl
);
manta manta_inst (
.clk(clk),
.rx(rs232_rx_ttl),
.tx(rs232_tx_ttl));
endmodule
`default_nettype wire