update examples, which appear to build :cowboy:
This commit is contained in:
parent
0840786914
commit
8b9abd1b0b
|
|
@ -0,0 +1,193 @@
|
|||
`default_nettype wire
|
||||
|
||||
// file: divider.sv
|
||||
//
|
||||
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
|
||||
//
|
||||
// This file contains confidential and proprietary information
|
||||
// of Xilinx, Inc. and is protected under U.S. and
|
||||
// international copyright and other intellectual property
|
||||
// laws.
|
||||
//
|
||||
// DISCLAIMER
|
||||
// This disclaimer is not a license and does not grant any
|
||||
// rights to the materials distributed herewith. Except as
|
||||
// otherwise provided in a valid license issued to you by
|
||||
// Xilinx, and to the maximum extent permitted by applicable
|
||||
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
|
||||
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
|
||||
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
|
||||
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
|
||||
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
|
||||
// (2) Xilinx shall not be liable (whether in contract or tort,
|
||||
// including negligence, or under any other theory of
|
||||
// liability) for any loss or damage of any kind or nature
|
||||
// related to, arising under or in connection with these
|
||||
// materials, including for any direct, or any indirect,
|
||||
// special, incidental, or consequential loss or damage
|
||||
// (including loss of data, profits, goodwill, or any type of
|
||||
// loss or damage suffered as a result of any action brought
|
||||
// by a third party) even if such damage or loss was
|
||||
// reasonably foreseeable or Xilinx had been advised of the
|
||||
// possibility of the same.
|
||||
//
|
||||
// CRITICAL APPLICATIONS
|
||||
// Xilinx products are not designed or intended to be fail-
|
||||
// safe, or for use in any application requiring fail-safe
|
||||
// performance, such as life-support or safety devices or
|
||||
// systems, Class III medical devices, nuclear facilities,
|
||||
// applications related to the deployment of airbags, or any
|
||||
// other applications that could lead to death, personal
|
||||
// injury, or severe property or environmental damage
|
||||
// (individually and collectively, "Critical
|
||||
// Applications"). Customer assumes the sole risk and
|
||||
// liability of any use of Xilinx products in Critical
|
||||
// Applications, subject only to applicable laws and
|
||||
// regulations governing limitations on product liability.
|
||||
//
|
||||
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
|
||||
// PART OF THIS FILE AT ALL TIMES.
|
||||
//
|
||||
//----------------------------------------------------------------------------
|
||||
// User entered comments
|
||||
//----------------------------------------------------------------------------
|
||||
// popopopopopopopopopopop
|
||||
//
|
||||
//----------------------------------------------------------------------------
|
||||
// Output Output Phase Duty Cycle Pk-to-Pk Phase
|
||||
// Clock Freq (MHz) (degrees) (%) Jitter (ps) Error (ps)
|
||||
//----------------------------------------------------------------------------
|
||||
// __ethclk__50.00000______0.000______50.0______151.636_____98.575
|
||||
//
|
||||
//----------------------------------------------------------------------------
|
||||
// Input Clock Freq (MHz) Input Jitter (UI)
|
||||
//----------------------------------------------------------------------------
|
||||
// __primary_________100.000____________0.010
|
||||
|
||||
`timescale 1ps/1ps
|
||||
|
||||
module divider
|
||||
|
||||
(// Clock in ports
|
||||
// Clock out ports
|
||||
output ethclk,
|
||||
input clk
|
||||
);
|
||||
// Input buffering
|
||||
//------------------------------------
|
||||
wire clk_divider;
|
||||
wire clk_in2_divider;
|
||||
IBUF clkin1_ibufg
|
||||
(.O (clk_divider),
|
||||
.I (clk));
|
||||
|
||||
|
||||
|
||||
|
||||
// Clocking PRIMITIVE
|
||||
//------------------------------------
|
||||
|
||||
// Instantiation of the MMCM PRIMITIVE
|
||||
// * Unused inputs are tied off
|
||||
// * Unused outputs are labeled unused
|
||||
|
||||
wire ethclk_divider;
|
||||
wire clk_out2_divider;
|
||||
wire clk_out3_divider;
|
||||
wire clk_out4_divider;
|
||||
wire clk_out5_divider;
|
||||
wire clk_out6_divider;
|
||||
wire clk_out7_divider;
|
||||
|
||||
wire [15:0] do_unused;
|
||||
wire drdy_unused;
|
||||
wire psdone_unused;
|
||||
wire locked_int;
|
||||
wire clkfbout_divider;
|
||||
wire clkfbout_buf_divider;
|
||||
wire clkfboutb_unused;
|
||||
wire clkout0b_unused;
|
||||
wire clkout1_unused;
|
||||
wire clkout1b_unused;
|
||||
wire clkout2_unused;
|
||||
wire clkout2b_unused;
|
||||
wire clkout3_unused;
|
||||
wire clkout3b_unused;
|
||||
wire clkout4_unused;
|
||||
wire clkout5_unused;
|
||||
wire clkout6_unused;
|
||||
wire clkfbstopped_unused;
|
||||
wire clkinstopped_unused;
|
||||
|
||||
MMCME2_ADV
|
||||
#(.BANDWIDTH ("OPTIMIZED"),
|
||||
.CLKOUT4_CASCADE ("FALSE"),
|
||||
.COMPENSATION ("ZHOLD"),
|
||||
.STARTUP_WAIT ("FALSE"),
|
||||
.DIVCLK_DIVIDE (1),
|
||||
.CLKFBOUT_MULT_F (10.000),
|
||||
.CLKFBOUT_PHASE (0.000),
|
||||
.CLKFBOUT_USE_FINE_PS ("FALSE"),
|
||||
.CLKOUT0_DIVIDE_F (20.000),
|
||||
.CLKOUT0_PHASE (0.000),
|
||||
.CLKOUT0_DUTY_CYCLE (0.500),
|
||||
.CLKOUT0_USE_FINE_PS ("FALSE"),
|
||||
.CLKIN1_PERIOD (10.000))
|
||||
mmcm_adv_inst
|
||||
// Output clocks
|
||||
(
|
||||
.CLKFBOUT (clkfbout_divider),
|
||||
.CLKFBOUTB (clkfboutb_unused),
|
||||
.CLKOUT0 (ethclk_divider),
|
||||
.CLKOUT0B (clkout0b_unused),
|
||||
.CLKOUT1 (clkout1_unused),
|
||||
.CLKOUT1B (clkout1b_unused),
|
||||
.CLKOUT2 (clkout2_unused),
|
||||
.CLKOUT2B (clkout2b_unused),
|
||||
.CLKOUT3 (clkout3_unused),
|
||||
.CLKOUT3B (clkout3b_unused),
|
||||
.CLKOUT4 (clkout4_unused),
|
||||
.CLKOUT5 (clkout5_unused),
|
||||
.CLKOUT6 (clkout6_unused),
|
||||
// Input clock control
|
||||
.CLKFBIN (clkfbout_buf_divider),
|
||||
.CLKIN1 (clk_divider),
|
||||
.CLKIN2 (1'b0),
|
||||
// Tied to always select the primary input clock
|
||||
.CLKINSEL (1'b1),
|
||||
// Ports for dynamic reconfiguration
|
||||
.DADDR (7'h0),
|
||||
.DCLK (1'b0),
|
||||
.DEN (1'b0),
|
||||
.DI (16'h0),
|
||||
.DO (do_unused),
|
||||
.DRDY (drdy_unused),
|
||||
.DWE (1'b0),
|
||||
// Ports for dynamic phase shift
|
||||
.PSCLK (1'b0),
|
||||
.PSEN (1'b0),
|
||||
.PSINCDEC (1'b0),
|
||||
.PSDONE (psdone_unused),
|
||||
// Other control and status signals
|
||||
.LOCKED (locked_int),
|
||||
.CLKINSTOPPED (clkinstopped_unused),
|
||||
.CLKFBSTOPPED (clkfbstopped_unused),
|
||||
.PWRDWN (1'b0),
|
||||
.RST (1'b0));
|
||||
|
||||
// Clock Monitor clock assigning
|
||||
//--------------------------------------
|
||||
// Output buffering
|
||||
//-----------------------------------
|
||||
|
||||
BUFG clkf_buf
|
||||
(.O (clkfbout_buf_divider),
|
||||
.I (clkfbout_divider));
|
||||
|
||||
BUFG clkout1_buf
|
||||
(.O (ethclk),
|
||||
.I (ethclk_divider));
|
||||
|
||||
endmodule
|
||||
|
||||
`default_nettype none
|
||||
|
|
@ -1 +0,0 @@
|
|||
../common/ssd.v
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module ssd (
|
||||
input wire clk,
|
||||
input wire [31:0] val,
|
||||
output reg [6:0] cat,
|
||||
output reg [7:0] an);
|
||||
|
||||
parameter COUNT_TO = 100000;
|
||||
|
||||
reg [7:0] segment_state = 8'b0000_0001;
|
||||
reg [31:0] segment_counter = 32'b0;
|
||||
reg [3:0] digit;
|
||||
reg [6:0] led_out;
|
||||
|
||||
bto7s mbto7s (
|
||||
.x_in(digit),
|
||||
.s_out(led_out));
|
||||
|
||||
assign cat = ~led_out;
|
||||
assign an = ~segment_state;
|
||||
|
||||
always @(*) begin
|
||||
case(segment_state)
|
||||
8'b0000_0001: digit = val[3:0];
|
||||
8'b0000_0010: digit = val[7:4];
|
||||
8'b0000_0100: digit = val[11:8];
|
||||
8'b0000_1000: digit = val[15:12];
|
||||
8'b0001_0000: digit = val[19:16];
|
||||
8'b0010_0000: digit = val[23:20];
|
||||
8'b0100_0000: digit = val[27:24];
|
||||
8'b1000_0000: digit = val[31:28];
|
||||
default: digit = val[3:0];
|
||||
endcase
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
segment_counter <= segment_counter + 1;
|
||||
|
||||
if (segment_counter == COUNT_TO) begin
|
||||
segment_counter <= 32'd0;
|
||||
segment_state <= {segment_state[6:0], segment_state[7]};
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module bto7s (
|
||||
input wire [3:0] x_in,
|
||||
output reg [6:0] s_out);
|
||||
|
||||
reg sa, sb, sc, sd, se, sf, sg;
|
||||
assign s_out = {sg, sf, se, sd, sc, sb, sa};
|
||||
|
||||
// array of bits that are "one hot" with numbers 0 through 15
|
||||
reg [15:0] num;
|
||||
genvar i;
|
||||
generate
|
||||
for(i=0; i<16; i=i+1)
|
||||
assign num[i] = (x_in == i);
|
||||
endgenerate
|
||||
|
||||
// map one-hot bits to active segments
|
||||
assign sa = (num & 16'b1101_0111_1110_1101) > 0;
|
||||
assign sb = (num & 16'b0010_0111_1001_1111) > 0;
|
||||
assign sc = (num & 16'b0010_1111_1111_1011) > 0;
|
||||
assign sd = (num & 16'b0111_1011_0110_1101) > 0;
|
||||
assign se = (num & 16'b1111_1101_0100_0101) > 0;
|
||||
assign sf = (num & 16'b1101_1111_0111_0001) > 0;
|
||||
assign sg = (num & 16'b1110_1111_0111_1100) > 0;
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -1 +0,0 @@
|
|||
../common/ssd.v
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module ssd (
|
||||
input wire clk,
|
||||
input wire [31:0] val,
|
||||
output reg [6:0] cat,
|
||||
output reg [7:0] an);
|
||||
|
||||
parameter COUNT_TO = 100000;
|
||||
|
||||
reg [7:0] segment_state = 8'b0000_0001;
|
||||
reg [31:0] segment_counter = 32'b0;
|
||||
reg [3:0] digit;
|
||||
reg [6:0] led_out;
|
||||
|
||||
bto7s mbto7s (
|
||||
.x_in(digit),
|
||||
.s_out(led_out));
|
||||
|
||||
assign cat = ~led_out;
|
||||
assign an = ~segment_state;
|
||||
|
||||
always @(*) begin
|
||||
case(segment_state)
|
||||
8'b0000_0001: digit = val[3:0];
|
||||
8'b0000_0010: digit = val[7:4];
|
||||
8'b0000_0100: digit = val[11:8];
|
||||
8'b0000_1000: digit = val[15:12];
|
||||
8'b0001_0000: digit = val[19:16];
|
||||
8'b0010_0000: digit = val[23:20];
|
||||
8'b0100_0000: digit = val[27:24];
|
||||
8'b1000_0000: digit = val[31:28];
|
||||
default: digit = val[3:0];
|
||||
endcase
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
segment_counter <= segment_counter + 1;
|
||||
|
||||
if (segment_counter == COUNT_TO) begin
|
||||
segment_counter <= 32'd0;
|
||||
segment_state <= {segment_state[6:0], segment_state[7]};
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module bto7s (
|
||||
input wire [3:0] x_in,
|
||||
output reg [6:0] s_out);
|
||||
|
||||
reg sa, sb, sc, sd, se, sf, sg;
|
||||
assign s_out = {sg, sf, se, sd, sc, sb, sa};
|
||||
|
||||
// array of bits that are "one hot" with numbers 0 through 15
|
||||
reg [15:0] num;
|
||||
genvar i;
|
||||
generate
|
||||
for(i=0; i<16; i=i+1)
|
||||
assign num[i] = (x_in == i);
|
||||
endgenerate
|
||||
|
||||
// map one-hot bits to active segments
|
||||
assign sa = (num & 16'b1101_0111_1110_1101) > 0;
|
||||
assign sb = (num & 16'b0010_0111_1001_1111) > 0;
|
||||
assign sc = (num & 16'b0010_1111_1111_1011) > 0;
|
||||
assign sd = (num & 16'b0111_1011_0110_1101) > 0;
|
||||
assign se = (num & 16'b1111_1101_0100_0101) > 0;
|
||||
assign sf = (num & 16'b1101_1111_0111_0001) > 0;
|
||||
assign sg = (num & 16'b1110_1111_0111_1100) > 0;
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -1 +0,0 @@
|
|||
../common/ssd.v
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module ssd (
|
||||
input wire clk,
|
||||
input wire [31:0] val,
|
||||
output reg [6:0] cat,
|
||||
output reg [7:0] an);
|
||||
|
||||
parameter COUNT_TO = 100000;
|
||||
|
||||
reg [7:0] segment_state = 8'b0000_0001;
|
||||
reg [31:0] segment_counter = 32'b0;
|
||||
reg [3:0] digit;
|
||||
reg [6:0] led_out;
|
||||
|
||||
bto7s mbto7s (
|
||||
.x_in(digit),
|
||||
.s_out(led_out));
|
||||
|
||||
assign cat = ~led_out;
|
||||
assign an = ~segment_state;
|
||||
|
||||
always @(*) begin
|
||||
case(segment_state)
|
||||
8'b0000_0001: digit = val[3:0];
|
||||
8'b0000_0010: digit = val[7:4];
|
||||
8'b0000_0100: digit = val[11:8];
|
||||
8'b0000_1000: digit = val[15:12];
|
||||
8'b0001_0000: digit = val[19:16];
|
||||
8'b0010_0000: digit = val[23:20];
|
||||
8'b0100_0000: digit = val[27:24];
|
||||
8'b1000_0000: digit = val[31:28];
|
||||
default: digit = val[3:0];
|
||||
endcase
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
segment_counter <= segment_counter + 1;
|
||||
|
||||
if (segment_counter == COUNT_TO) begin
|
||||
segment_counter <= 32'd0;
|
||||
segment_state <= {segment_state[6:0], segment_state[7]};
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module bto7s (
|
||||
input wire [3:0] x_in,
|
||||
output reg [6:0] s_out);
|
||||
|
||||
reg sa, sb, sc, sd, se, sf, sg;
|
||||
assign s_out = {sg, sf, se, sd, sc, sb, sa};
|
||||
|
||||
// array of bits that are "one hot" with numbers 0 through 15
|
||||
reg [15:0] num;
|
||||
genvar i;
|
||||
generate
|
||||
for(i=0; i<16; i=i+1)
|
||||
assign num[i] = (x_in == i);
|
||||
endgenerate
|
||||
|
||||
// map one-hot bits to active segments
|
||||
assign sa = (num & 16'b1101_0111_1110_1101) > 0;
|
||||
assign sb = (num & 16'b0010_0111_1001_1111) > 0;
|
||||
assign sc = (num & 16'b0010_1111_1111_1011) > 0;
|
||||
assign sd = (num & 16'b0111_1011_0110_1101) > 0;
|
||||
assign se = (num & 16'b1111_1101_0100_0101) > 0;
|
||||
assign sf = (num & 16'b1101_1111_0111_0001) > 0;
|
||||
assign sg = (num & 16'b1110_1111_0111_1100) > 0;
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -41,10 +41,10 @@ module top_level (
|
|||
reg rw_latched = 0;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (manta.brx_my_lut_mem_valid) begin
|
||||
addr_latched <= manta.my_lut_mem_brx_addr;
|
||||
data_latched <= manta.my_lut_mem_brx_data;
|
||||
rw_latched <= manta.my_lut_mem_btx_rw;
|
||||
if (manta_inst.brx_my_lut_mem_valid) begin
|
||||
addr_latched <= manta_inst.my_lut_mem_brx_addr;
|
||||
data_latched <= manta_inst.my_lut_mem_brx_data;
|
||||
rw_latched <= manta_inst.my_lut_mem_btx_rw;
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
|||
|
|
@ -1 +0,0 @@
|
|||
../common/ssd.v
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module ssd (
|
||||
input wire clk,
|
||||
input wire [31:0] val,
|
||||
output reg [6:0] cat,
|
||||
output reg [7:0] an);
|
||||
|
||||
parameter COUNT_TO = 100000;
|
||||
|
||||
reg [7:0] segment_state = 8'b0000_0001;
|
||||
reg [31:0] segment_counter = 32'b0;
|
||||
reg [3:0] digit;
|
||||
reg [6:0] led_out;
|
||||
|
||||
bto7s mbto7s (
|
||||
.x_in(digit),
|
||||
.s_out(led_out));
|
||||
|
||||
assign cat = ~led_out;
|
||||
assign an = ~segment_state;
|
||||
|
||||
always @(*) begin
|
||||
case(segment_state)
|
||||
8'b0000_0001: digit = val[3:0];
|
||||
8'b0000_0010: digit = val[7:4];
|
||||
8'b0000_0100: digit = val[11:8];
|
||||
8'b0000_1000: digit = val[15:12];
|
||||
8'b0001_0000: digit = val[19:16];
|
||||
8'b0010_0000: digit = val[23:20];
|
||||
8'b0100_0000: digit = val[27:24];
|
||||
8'b1000_0000: digit = val[31:28];
|
||||
default: digit = val[3:0];
|
||||
endcase
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
segment_counter <= segment_counter + 1;
|
||||
|
||||
if (segment_counter == COUNT_TO) begin
|
||||
segment_counter <= 32'd0;
|
||||
segment_state <= {segment_state[6:0], segment_state[7]};
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module bto7s (
|
||||
input wire [3:0] x_in,
|
||||
output reg [6:0] s_out);
|
||||
|
||||
reg sa, sb, sc, sd, se, sf, sg;
|
||||
assign s_out = {sg, sf, se, sd, sc, sb, sa};
|
||||
|
||||
// array of bits that are "one hot" with numbers 0 through 15
|
||||
reg [15:0] num;
|
||||
genvar i;
|
||||
generate
|
||||
for(i=0; i<16; i=i+1)
|
||||
assign num[i] = (x_in == i);
|
||||
endgenerate
|
||||
|
||||
// map one-hot bits to active segments
|
||||
assign sa = (num & 16'b1101_0111_1110_1101) > 0;
|
||||
assign sb = (num & 16'b0010_0111_1001_1111) > 0;
|
||||
assign sc = (num & 16'b0010_1111_1111_1011) > 0;
|
||||
assign sd = (num & 16'b0111_1011_0110_1101) > 0;
|
||||
assign se = (num & 16'b1111_1101_0100_0101) > 0;
|
||||
assign sf = (num & 16'b1101_1111_0111_0001) > 0;
|
||||
assign sg = (num & 16'b1110_1111_0111_1100) > 0;
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -26,10 +26,10 @@ module top_level (
|
|||
reg rw_latched = 0;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (manta.brx_my_lut_mem_valid) begin
|
||||
addr_latched <= manta.my_lut_mem_brx_addr;
|
||||
data_latched <= manta.my_lut_mem_brx_data;
|
||||
rw_latched <= manta.my_lut_mem_btx_rw;
|
||||
if (manta_inst.brx_my_lut_mem_valid) begin
|
||||
addr_latched <= manta_inst.my_lut_mem_brx_addr;
|
||||
data_latched <= manta_inst.my_lut_mem_brx_data;
|
||||
rw_latched <= manta_inst.my_lut_mem_btx_rw;
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
This playback module was generated with Manta v0.0.5 on 17 Jul 2023 at 07:28:30 by fischerm
|
||||
This playback module was generated with Manta v0.0.5 on 19 Jul 2023 at 09:22:12 by fischerm
|
||||
|
||||
If this breaks or if you've got dank formal verification memes, contact fischerm [at] mit.edu
|
||||
|
||||
|
|
|
|||
|
|
@ -7,3 +7,4 @@ cores:
|
|||
|
||||
ethernet:
|
||||
interface: "en8"
|
||||
host_mac: "12:34:56:78:90:ab"
|
||||
|
|
@ -1 +0,0 @@
|
|||
../../common/ssd.v
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module ssd (
|
||||
input wire clk,
|
||||
input wire [31:0] val,
|
||||
output reg [6:0] cat,
|
||||
output reg [7:0] an);
|
||||
|
||||
parameter COUNT_TO = 100000;
|
||||
|
||||
reg [7:0] segment_state = 8'b0000_0001;
|
||||
reg [31:0] segment_counter = 32'b0;
|
||||
reg [3:0] digit;
|
||||
reg [6:0] led_out;
|
||||
|
||||
bto7s mbto7s (
|
||||
.x_in(digit),
|
||||
.s_out(led_out));
|
||||
|
||||
assign cat = ~led_out;
|
||||
assign an = ~segment_state;
|
||||
|
||||
always @(*) begin
|
||||
case(segment_state)
|
||||
8'b0000_0001: digit = val[3:0];
|
||||
8'b0000_0010: digit = val[7:4];
|
||||
8'b0000_0100: digit = val[11:8];
|
||||
8'b0000_1000: digit = val[15:12];
|
||||
8'b0001_0000: digit = val[19:16];
|
||||
8'b0010_0000: digit = val[23:20];
|
||||
8'b0100_0000: digit = val[27:24];
|
||||
8'b1000_0000: digit = val[31:28];
|
||||
default: digit = val[3:0];
|
||||
endcase
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
segment_counter <= segment_counter + 1;
|
||||
|
||||
if (segment_counter == COUNT_TO) begin
|
||||
segment_counter <= 32'd0;
|
||||
segment_state <= {segment_state[6:0], segment_state[7]};
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module bto7s (
|
||||
input wire [3:0] x_in,
|
||||
output reg [6:0] s_out);
|
||||
|
||||
reg sa, sb, sc, sd, se, sf, sg;
|
||||
assign s_out = {sg, sf, se, sd, sc, sb, sa};
|
||||
|
||||
// array of bits that are "one hot" with numbers 0 through 15
|
||||
reg [15:0] num;
|
||||
genvar i;
|
||||
generate
|
||||
for(i=0; i<16; i=i+1)
|
||||
assign num[i] = (x_in == i);
|
||||
endgenerate
|
||||
|
||||
// map one-hot bits to active segments
|
||||
assign sa = (num & 16'b1101_0111_1110_1101) > 0;
|
||||
assign sb = (num & 16'b0010_0111_1001_1111) > 0;
|
||||
assign sc = (num & 16'b0010_1111_1111_1011) > 0;
|
||||
assign sd = (num & 16'b0111_1011_0110_1101) > 0;
|
||||
assign se = (num & 16'b1111_1101_0100_0101) > 0;
|
||||
assign sf = (num & 16'b1101_1111_0111_0001) > 0;
|
||||
assign sg = (num & 16'b1110_1111_0111_1100) > 0;
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -97,16 +97,16 @@
|
|||
reg [15:0] data_latched = 0;
|
||||
reg rw_latched = 0;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (manta.brx_image_mem_valid) begin
|
||||
addr_latched <= manta.image_mem_brx_addr;
|
||||
data_latched <= manta.image_mem_brx_data;
|
||||
rw_latched <= manta.image_mem_btx_rw;
|
||||
always @(posedge clk_65mhz) begin
|
||||
if (manta_inst.brx_image_mem_valid) begin
|
||||
addr_latched <= manta_inst.brx_image_mem_addr;
|
||||
data_latched <= manta_inst.brx_image_mem_data;
|
||||
rw_latched <= manta_inst.brx_image_mem_rw;
|
||||
end
|
||||
end
|
||||
|
||||
ssd ssd (
|
||||
.clk(clk),
|
||||
.clk(clk_65mhz),
|
||||
.val( (addr_latched << 16) | (data_latched) ),
|
||||
.cat({cg,cf,ce,cd,cc,cb,ca}),
|
||||
.an(an));
|
||||
|
|
|
|||
Loading…
Reference in New Issue