add icestick builds / iCE40 to CI (#1)
* initial commit * fix yaml file * add yosys deps to CI * fix indentation in ice40 CI builds * update ice40 CI * try using oss cad suite instead of compiling from source * fix pathing directory * ensure jobs are sequential * ensure we're in the same shell * move source files to same action * update icestick project structure to match the a7's * update build script for ice40 to match updated proj structure * update CI to match previous * update CI path * update build script naming --------- Co-authored-by: fischerm <fischerm@EECS-DIGITAL-55.MIT.EDU>
This commit is contained in:
parent
6475869fcb
commit
3728a5263d
|
|
@ -0,0 +1,14 @@
|
|||
name: build_icestick_examples
|
||||
on: [push]
|
||||
jobs:
|
||||
install-toolchain:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: install yosys
|
||||
run: |
|
||||
wget --no-verbose https://github.com/YosysHQ/oss-cad-suite-build/releases/download/2023-02-23/oss-cad-suite-linux-x64-20230223.tgz
|
||||
tar -xzf oss-cad-suite-linux-x64-20230223.tgz
|
||||
export PATH="$(pwd)/oss-cad-suite/bin/:$PATH"
|
||||
cd examples/icestick/counter
|
||||
./build.sh
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
name: build_examples
|
||||
name: build_nexys_a7_examples
|
||||
on: [push]
|
||||
jobs:
|
||||
counter:
|
||||
|
|
@ -27,12 +27,12 @@ jobs:
|
|||
python3 -m pip install .
|
||||
|
||||
- name: Generate Core
|
||||
run: manta gen examples/counter/manta.yaml examples/counter/src/debug.sv
|
||||
run: manta gen examples/nexys_a7/counter/manta.yaml examples/nexys_a7/counter/src/debug.sv
|
||||
|
||||
- name: Build Verilog
|
||||
working-directory: examples/counter
|
||||
working-directory: examples/nexys_a7/counter
|
||||
run: mkdir obj && python3 lab-bc.py
|
||||
|
||||
- name: Print build.log
|
||||
working-directory: examples/counter
|
||||
working-directory: examples/nexys_a7/counter
|
||||
run: cat obj/build.log
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
#!/bin/bash
|
||||
yosys -p 'synth_ice40 -top top_level -json counter.json' src/top_level.sv
|
||||
nextpnr-ice40 --hx1k --json counter.json --pcf pcf/top_level.pcf --asc counter.asc
|
||||
icepack counter.asc counter.bin
|
||||
|
|
@ -0,0 +1,21 @@
|
|||
---
|
||||
downlink:
|
||||
sample_depth: 4096
|
||||
clock_freq: 12000000
|
||||
|
||||
probes:
|
||||
larry: 1
|
||||
curly: 1
|
||||
moe: 1
|
||||
shemp: 4
|
||||
|
||||
triggers:
|
||||
- larry && curly && ~moe
|
||||
|
||||
uart:
|
||||
baudrate: 115200
|
||||
port: "/dev/tty.usbserial-2102926963071"
|
||||
data: 8
|
||||
parity: none
|
||||
stop: 1
|
||||
timeout: 1
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
# Generic iCEstick placement constraints file
|
||||
|
||||
# Red LEDs
|
||||
set_io LED0 99
|
||||
set_io LED1 98
|
||||
set_io LED2 97
|
||||
set_io LED3 96
|
||||
|
||||
# Green LED
|
||||
set_io LED4 95
|
||||
|
||||
# IrDA port
|
||||
#set_io RXD 106
|
||||
#set_io TXD 105
|
||||
#set_io SD 107
|
||||
|
||||
# Pmod connector
|
||||
#set_io PIO1_02 78 # Pin 1
|
||||
#set_io PIO1_03 79 # Pin 2
|
||||
#set_io PIO1_04 80 # Pin 3
|
||||
#set_io PIO1_05 81 # Pin 4
|
||||
#set_io PIO1_06 87 # Pin 7
|
||||
#set_io PIO1_07 88 # Pin 8
|
||||
#set_io PIO1_08 90 # Pin 9
|
||||
#set_io PIO1_09 91 # Pin 10
|
||||
|
||||
# Connector J1
|
||||
#set_io PIO0_02 112 # Pin 3
|
||||
#set_io PIO0_03 113 # Pin 4
|
||||
#set_io PIO0_04 114 # Pin 5
|
||||
#set_io PIO0_05 115 # Pin 6
|
||||
#set_io PIO0_06 116 # Pin 7
|
||||
#set_io PIO0_07 117 # Pin 8
|
||||
#set_io PIO0_08 118 # Pin 9
|
||||
#set_io PIO0_09 119 # Pin 10
|
||||
|
||||
# Connector J3
|
||||
#set_io PIO2_17 62 # Pin 3
|
||||
#set_io PIO2_16 61 # Pin 4
|
||||
#set_io PIO2_15 60 # Pin 5
|
||||
#set_io PIO2_14 56 # Pin 6
|
||||
#set_io PIO2_13 48 # Pin 7
|
||||
#set_io PIO2_12 47 # Pin 8
|
||||
#set_io PIO2_11 45 # Pin 9
|
||||
#set_io PIO2_10 44 # Pin 10
|
||||
|
||||
# FTDI Port B UART
|
||||
#set_io DCDn 1
|
||||
#set_io DSRn 2
|
||||
#set_io DTRn 3
|
||||
#set_io CTSn 4
|
||||
#set_io RTSn 7
|
||||
set_io rs232_tx_ttl 8
|
||||
set_io rs232_rx_ttl 9
|
||||
|
||||
# SPI
|
||||
#set_io SPI_SCK 70
|
||||
#set_io SPI_SI 68
|
||||
#set_io SPI_SO 67
|
||||
#set_io SPI_SS_B 71
|
||||
|
||||
# Configuration pins
|
||||
#set_io CDONE 65
|
||||
#set_io CRESET_B 66
|
||||
|
||||
# 12 MHz clock
|
||||
set_io clk 21
|
||||
|
|
@ -0,0 +1,600 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
This manta definition was autogenerated on 23 Feb 2023 at 18:10:18 by fischerm
|
||||
|
||||
If this breaks or if you've got dank formal verification memes,
|
||||
please contact fischerm [at] mit.edu.
|
||||
*/
|
||||
|
||||
`define IDLE 0
|
||||
`define ARM 1
|
||||
`define FILL 2
|
||||
`define DOWNLINK 3
|
||||
|
||||
`define ARM_BYTE 8'b00110000
|
||||
|
||||
module manta (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/* Begin autogenerated probe definitions */
|
||||
input wire larry,
|
||||
input wire curly,
|
||||
input wire moe,
|
||||
input wire [3:0] shemp,
|
||||
/* End autogenerated probe definitions */
|
||||
|
||||
input wire rxd,
|
||||
output logic txd);
|
||||
|
||||
/* Begin autogenerated parameters */
|
||||
localparam SAMPLE_WIDTH = 7;
|
||||
localparam SAMPLE_DEPTH = 4096;
|
||||
|
||||
localparam DATA_WIDTH = 8;
|
||||
localparam BAUDRATE = 115200;
|
||||
localparam CLK_FREQ_HZ = 12000000;
|
||||
|
||||
logic trigger;
|
||||
assign trigger = (larry && curly && ~moe);
|
||||
|
||||
logic [SAMPLE_WIDTH - 1 : 0] concat;
|
||||
assign concat = {larry, curly, moe, shemp};
|
||||
/* End autogenerated parameters */
|
||||
|
||||
|
||||
// FIFO
|
||||
logic [7:0] fifo_data_in;
|
||||
logic fifo_input_ready;
|
||||
|
||||
logic fifo_request_output;
|
||||
logic [7:0] fifo_data_out;
|
||||
logic fifo_output_valid;
|
||||
|
||||
logic [11:0] fifo_size;
|
||||
logic fifo_empty;
|
||||
logic fifo_full;
|
||||
|
||||
fifo #(
|
||||
.WIDTH(SAMPLE_WIDTH),
|
||||
.DEPTH(SAMPLE_DEPTH)
|
||||
) fifo (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
.data_in(fifo_data_in),
|
||||
.input_ready(fifo_input_ready),
|
||||
|
||||
.request_output(fifo_request_output),
|
||||
.data_out(fifo_data_out),
|
||||
.output_valid(fifo_output_valid),
|
||||
|
||||
.size(fifo_size),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full));
|
||||
|
||||
// Serial interface
|
||||
logic tx_start;
|
||||
logic [7:0] tx_data;
|
||||
logic tx_busy;
|
||||
|
||||
logic [7:0] rx_data;
|
||||
logic rx_ready;
|
||||
logic rx_busy;
|
||||
|
||||
|
||||
uart_tx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
tx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.start(tx_start),
|
||||
.data(tx_data),
|
||||
|
||||
.busy(tx_busy),
|
||||
.txd(txd));
|
||||
|
||||
uart_rx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
rx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.rxd(rxd),
|
||||
|
||||
.data(rx_data),
|
||||
.ready(rx_ready),
|
||||
.busy(rx_busy));
|
||||
|
||||
|
||||
/* State Machine */
|
||||
/*
|
||||
|
||||
IDLE:
|
||||
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
|
||||
- an arm command over serial is what brings us into the ARM state
|
||||
|
||||
ARM:
|
||||
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
|
||||
- meeting the trigger condition is what moves us into the filing state
|
||||
|
||||
FILL:
|
||||
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
|
||||
|
||||
DOWNLINK:
|
||||
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
|
||||
*/
|
||||
|
||||
/* Downlink State Machine Controller */
|
||||
/*
|
||||
|
||||
- ila enters the downlink state
|
||||
- set fifo_output_request high for a clock cycle
|
||||
- when fifo_output_valid goes high, send fifo_data_out across the line
|
||||
- do nothing until tx_busy goes low
|
||||
- goto step 2
|
||||
|
||||
*/
|
||||
|
||||
logic [1:0] state;
|
||||
logic [2:0] downlink_fsm_state;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) begin
|
||||
state <= `IDLE;
|
||||
downlink_fsm_state <= 0;
|
||||
tx_data <= 0;
|
||||
tx_start <= 0;
|
||||
end
|
||||
else begin
|
||||
|
||||
case (state)
|
||||
`IDLE : begin
|
||||
fifo_input_ready <= 0;
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
|
||||
|
||||
end
|
||||
|
||||
`ARM : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// remove old samples if we're more than halfway full
|
||||
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
|
||||
|
||||
if(trigger) state <= `FILL;
|
||||
end
|
||||
|
||||
`FILL : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// don't pop anything out the FIFO
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
|
||||
end
|
||||
|
||||
`DOWNLINK : begin
|
||||
// place no samples into FIFO
|
||||
fifo_input_ready <= 0;
|
||||
|
||||
|
||||
case (downlink_fsm_state)
|
||||
0 : begin
|
||||
if (~fifo_empty) begin
|
||||
fifo_request_output <= 1;
|
||||
downlink_fsm_state <= 1;
|
||||
end
|
||||
|
||||
else state <= `IDLE;
|
||||
end
|
||||
|
||||
1 : begin
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (fifo_output_valid) begin
|
||||
tx_data <= fifo_data_out;
|
||||
tx_start <= 1;
|
||||
downlink_fsm_state <= 2;
|
||||
end
|
||||
end
|
||||
|
||||
2 : begin
|
||||
tx_start <= 0;
|
||||
|
||||
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
|
||||
end
|
||||
endcase
|
||||
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module fifo (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
input wire [WIDTH - 1:0] data_in,
|
||||
input wire input_ready,
|
||||
|
||||
input wire request_output,
|
||||
output logic [WIDTH - 1:0] data_out,
|
||||
output logic output_valid,
|
||||
|
||||
output logic [AW:0] size,
|
||||
output logic empty,
|
||||
output logic full
|
||||
);
|
||||
|
||||
parameter WIDTH = 8;
|
||||
parameter DEPTH = 4096;
|
||||
localparam AW = $clog2(DEPTH);
|
||||
|
||||
logic [AW:0] write_pointer;
|
||||
logic [AW:0] read_pointer;
|
||||
|
||||
logic empty_int;
|
||||
assign empty_int = (write_pointer[AW] == read_pointer[AW]);
|
||||
|
||||
logic full_or_empty;
|
||||
assign full_or_empty = (write_pointer[AW-1:0] == read_pointer[AW-1:0]);
|
||||
|
||||
assign full = full_or_empty & !empty_int;
|
||||
assign empty = full_or_empty & empty_int;
|
||||
assign size = write_pointer - read_pointer;
|
||||
|
||||
logic output_valid_pip_0;
|
||||
logic output_valid_pip_1;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if (input_ready && ~full)
|
||||
write_pointer <= write_pointer + 1'd1;
|
||||
|
||||
if (request_output && ~empty)
|
||||
read_pointer <= read_pointer + 1'd1;
|
||||
output_valid_pip_0 <= request_output;
|
||||
output_valid_pip_1 <= output_valid_pip_0;
|
||||
output_valid <= output_valid_pip_1;
|
||||
|
||||
if (rst) begin
|
||||
read_pointer <= 0;
|
||||
write_pointer <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(WIDTH),
|
||||
.RAM_DEPTH(DEPTH),
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
|
||||
|
||||
) buffer (
|
||||
|
||||
// write port
|
||||
.clka(clk),
|
||||
.rsta(rst),
|
||||
.ena(1),
|
||||
.addra(write_pointer),
|
||||
.dina(data_in),
|
||||
.wea(input_ready),
|
||||
.regcea(1),
|
||||
.douta(),
|
||||
|
||||
// read port
|
||||
.clkb(clk),
|
||||
.rstb(rst),
|
||||
.enb(1),
|
||||
.addrb(read_pointer),
|
||||
.dinb(),
|
||||
.web(0),
|
||||
.regceb(1),
|
||||
.doutb(data_out));
|
||||
endmodule
|
||||
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire [DATA_WIDTH-1:0] data,
|
||||
input wire start,
|
||||
|
||||
output logic busy,
|
||||
output logic txd
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH - 1:0] data_buf;
|
||||
|
||||
// make secondary logic for baudrate
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) baud_counter <= 0;
|
||||
else begin
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
busy <= 0;
|
||||
txd <= 1; // idle high
|
||||
end
|
||||
|
||||
// enter transmitting state logic
|
||||
// don't allow new requests to interrupt current
|
||||
// transfers
|
||||
if(start && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= data;
|
||||
end
|
||||
|
||||
|
||||
// transmitting state logic
|
||||
else if(baud_counter == 0 && busy) begin
|
||||
|
||||
if (bit_index == 0) begin
|
||||
txd <= 0;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
|
||||
txd <= data_buf[bit_index - 1];
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index == DATA_WIDTH + 1) begin
|
||||
txd <= 1;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index >= DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
|
||||
module uart_rx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire rxd,
|
||||
|
||||
output logic [DATA_WIDTH - 1:0] data,
|
||||
output logic ready,
|
||||
output logic busy
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH + 2 : 0] data_buf;
|
||||
|
||||
logic prev_rxd;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
prev_rxd <= rxd;
|
||||
ready <= 0;
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
data <= 0;
|
||||
busy <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// start receiving if we see a falling edge, and not already busy
|
||||
else if (prev_rxd && ~rxd && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// if we're actually receiving
|
||||
else if (busy) begin
|
||||
if (baud_counter == PRESCALER / 2) begin
|
||||
data_buf[bit_index] <= rxd;
|
||||
bit_index <= bit_index + 1;
|
||||
|
||||
if (bit_index == DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
|
||||
|
||||
if (rxd && ~data_buf[0]) begin
|
||||
data <= data_buf[DATA_WIDTH : 1];
|
||||
ready <= 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
// This code implements a parameterizable true dual port memory (both ports can read and write).
|
||||
// The behavior of this RAM is when data is written, the prior memory contents at the write
|
||||
// address are presented on the output port. If the output data is
|
||||
// not needed during writes or the last read value is desired to be retained,
|
||||
// it is suggested to use a no change RAM as it is more power efficient.
|
||||
// If a reset or enable is not necessary, it may be tied off or removed from the code.
|
||||
|
||||
module xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
parameter RAM_WIDTH = 18, // Specify RAM data width
|
||||
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
|
||||
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) (
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
|
||||
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
|
||||
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
|
||||
input clka, // Port A clock
|
||||
input clkb, // Port B clock
|
||||
input wea, // Port A write enable
|
||||
input web, // Port B write enable
|
||||
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
input rsta, // Port A output reset (does not affect memory contents)
|
||||
input rstb, // Port B output reset (does not affect memory contents)
|
||||
input regcea, // Port A output register enable
|
||||
input regceb, // Port B output register enable
|
||||
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
|
||||
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
|
||||
);
|
||||
|
||||
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
|
||||
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
|
||||
|
||||
//this loop below allows for rendering with iverilog simulations!
|
||||
/*
|
||||
integer idx;
|
||||
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
|
||||
wire [RAM_WIDTH-1:0] tmp;
|
||||
assign tmp = BRAM[idx];
|
||||
end
|
||||
*/
|
||||
|
||||
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
|
||||
generate
|
||||
if (INIT_FILE != "") begin: use_init_file
|
||||
initial
|
||||
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
|
||||
end else begin: init_bram_to_zero
|
||||
integer ram_index;
|
||||
initial
|
||||
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
|
||||
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
|
||||
end
|
||||
endgenerate
|
||||
integer idx;
|
||||
// initial begin
|
||||
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
|
||||
// $dumpvars(0, BRAM[idx]);
|
||||
// end
|
||||
// end
|
||||
always @(posedge clka)
|
||||
if (ena) begin
|
||||
if (wea)
|
||||
BRAM[addra] <= dina;
|
||||
ram_data_a <= BRAM[addra];
|
||||
end
|
||||
|
||||
always @(posedge clkb)
|
||||
if (enb) begin
|
||||
if (web)
|
||||
BRAM[addrb] <= dinb;
|
||||
ram_data_b <= BRAM[addrb];
|
||||
end
|
||||
|
||||
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
|
||||
generate
|
||||
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
|
||||
|
||||
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
|
||||
assign douta = ram_data_a;
|
||||
assign doutb = ram_data_b;
|
||||
|
||||
end else begin: output_register
|
||||
|
||||
// The following is a 2 clock cycle read latency with improve clock-to-out timing
|
||||
|
||||
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
|
||||
|
||||
always @(posedge clka)
|
||||
if (rsta)
|
||||
douta_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regcea)
|
||||
douta_reg <= ram_data_a;
|
||||
|
||||
always @(posedge clkb)
|
||||
if (rstb)
|
||||
doutb_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regceb)
|
||||
doutb_reg <= ram_data_b;
|
||||
|
||||
assign douta = douta_reg;
|
||||
assign doutb = doutb_reg;
|
||||
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// The following function calculates the address width based on specified RAM depth
|
||||
function integer clogb2;
|
||||
input integer depth;
|
||||
for (clogb2=0; depth>0; clogb2=clogb2+1)
|
||||
depth = depth >> 1;
|
||||
endfunction
|
||||
|
||||
endmodule
|
||||
|
||||
// The following is an instantiation template for xilinx_true_dual_port_read_first_2_clock_ram
|
||||
/*
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(18), // Specify RAM data width
|
||||
.RAM_DEPTH(1024), // Specify RAM depth (number of entries)
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
.INIT_FILE("") // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) your_instance_name (
|
||||
.addra(addra), // Port A address bus, width determined from RAM_DEPTH
|
||||
.addrb(addrb), // Port B address bus, width determined from RAM_DEPTH
|
||||
.dina(dina), // Port A RAM input data, width determined from RAM_WIDTH
|
||||
.dinb(dinb), // Port B RAM input data, width determined from RAM_WIDTH
|
||||
.clka(clka), // Port A clock
|
||||
.clkb(clkb), // Port B clock
|
||||
.wea(wea), // Port A write enable
|
||||
.web(web), // Port B write enable
|
||||
.ena(ena), // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
.enb(enb), // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
.rsta(rsta), // Port A output reset (does not affect memory contents)
|
||||
.rstb(rstb), // Port B output reset (does not affect memory contents)
|
||||
.regcea(regcea), // Port A output register enable
|
||||
.regceb(regceb), // Port B output register enable
|
||||
.douta(douta), // Port A RAM output data, width determined from RAM_WIDTH
|
||||
.doutb(doutb) // Port B RAM output data, width determined from RAM_WIDTH
|
||||
);
|
||||
*/
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
`include "src/debug.sv"
|
||||
|
||||
module top_level (
|
||||
input wire clk,
|
||||
|
||||
input wire rs232_rx_ttl,
|
||||
output logic rs232_tx_ttl
|
||||
);
|
||||
|
||||
wire rst = 0;
|
||||
|
||||
// Signal Generator
|
||||
logic [7:0] count;
|
||||
always_ff @(posedge clk) count <= count + 1;
|
||||
|
||||
// debugger
|
||||
manta manta(
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.larry(count[0]),
|
||||
.curly(count[1]),
|
||||
.moe(count[2]),
|
||||
.shemp(count[3:0]),
|
||||
|
||||
.rxd(rs232_rx_ttl),
|
||||
.txd(rs232_tx_ttl));
|
||||
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
Loading…
Reference in New Issue