add working icestick io core example
This commit is contained in:
parent
20f28be214
commit
1b27a6f948
|
|
@ -1,4 +0,0 @@
|
|||
#!/bin/bash
|
||||
yosys -p 'synth_ice40 -top top_level -json counter.json' src/top_level.sv
|
||||
nextpnr-ice40 --hx1k --json counter.json --pcf pcf/top_level.pcf --asc counter.asc
|
||||
icepack counter.asc counter.bin
|
||||
|
|
@ -1,21 +0,0 @@
|
|||
---
|
||||
downlink:
|
||||
sample_depth: 4096
|
||||
clock_freq: 12000000
|
||||
|
||||
probes:
|
||||
larry: 1
|
||||
curly: 1
|
||||
moe: 1
|
||||
shemp: 4
|
||||
|
||||
triggers:
|
||||
- larry && curly && ~moe
|
||||
|
||||
uart:
|
||||
baudrate: 115200
|
||||
port: "/dev/tty.usbserial-2102926963071"
|
||||
data: 8
|
||||
parity: none
|
||||
stop: 1
|
||||
timeout: 1
|
||||
|
|
@ -1,600 +0,0 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
This manta definition was autogenerated on 23 Feb 2023 at 18:10:18 by fischerm
|
||||
|
||||
If this breaks or if you've got dank formal verification memes,
|
||||
please contact fischerm [at] mit.edu.
|
||||
*/
|
||||
|
||||
`define IDLE 0
|
||||
`define ARM 1
|
||||
`define FILL 2
|
||||
`define DOWNLINK 3
|
||||
|
||||
`define ARM_BYTE 8'b00110000
|
||||
|
||||
module manta (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/* Begin autogenerated probe definitions */
|
||||
input wire larry,
|
||||
input wire curly,
|
||||
input wire moe,
|
||||
input wire [3:0] shemp,
|
||||
/* End autogenerated probe definitions */
|
||||
|
||||
input wire rxd,
|
||||
output logic txd);
|
||||
|
||||
/* Begin autogenerated parameters */
|
||||
localparam SAMPLE_WIDTH = 7;
|
||||
localparam SAMPLE_DEPTH = 4096;
|
||||
|
||||
localparam DATA_WIDTH = 8;
|
||||
localparam BAUDRATE = 115200;
|
||||
localparam CLK_FREQ_HZ = 12000000;
|
||||
|
||||
logic trigger;
|
||||
assign trigger = (larry && curly && ~moe);
|
||||
|
||||
logic [SAMPLE_WIDTH - 1 : 0] concat;
|
||||
assign concat = {larry, curly, moe, shemp};
|
||||
/* End autogenerated parameters */
|
||||
|
||||
|
||||
// FIFO
|
||||
logic [7:0] fifo_data_in;
|
||||
logic fifo_input_ready;
|
||||
|
||||
logic fifo_request_output;
|
||||
logic [7:0] fifo_data_out;
|
||||
logic fifo_output_valid;
|
||||
|
||||
logic [11:0] fifo_size;
|
||||
logic fifo_empty;
|
||||
logic fifo_full;
|
||||
|
||||
fifo #(
|
||||
.WIDTH(SAMPLE_WIDTH),
|
||||
.DEPTH(SAMPLE_DEPTH)
|
||||
) fifo (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
|
||||
.data_in(fifo_data_in),
|
||||
.input_ready(fifo_input_ready),
|
||||
|
||||
.request_output(fifo_request_output),
|
||||
.data_out(fifo_data_out),
|
||||
.output_valid(fifo_output_valid),
|
||||
|
||||
.size(fifo_size),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full));
|
||||
|
||||
// Serial interface
|
||||
logic tx_start;
|
||||
logic [7:0] tx_data;
|
||||
logic tx_busy;
|
||||
|
||||
logic [7:0] rx_data;
|
||||
logic rx_ready;
|
||||
logic rx_busy;
|
||||
|
||||
|
||||
uart_tx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
tx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.start(tx_start),
|
||||
.data(tx_data),
|
||||
|
||||
.busy(tx_busy),
|
||||
.txd(txd));
|
||||
|
||||
uart_rx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
rx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.rxd(rxd),
|
||||
|
||||
.data(rx_data),
|
||||
.ready(rx_ready),
|
||||
.busy(rx_busy));
|
||||
|
||||
|
||||
/* State Machine */
|
||||
/*
|
||||
|
||||
IDLE:
|
||||
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
|
||||
- an arm command over serial is what brings us into the ARM state
|
||||
|
||||
ARM:
|
||||
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
|
||||
- meeting the trigger condition is what moves us into the filing state
|
||||
|
||||
FILL:
|
||||
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
|
||||
|
||||
DOWNLINK:
|
||||
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
|
||||
*/
|
||||
|
||||
/* Downlink State Machine Controller */
|
||||
/*
|
||||
|
||||
- ila enters the downlink state
|
||||
- set fifo_output_request high for a clock cycle
|
||||
- when fifo_output_valid goes high, send fifo_data_out across the line
|
||||
- do nothing until tx_busy goes low
|
||||
- goto step 2
|
||||
|
||||
*/
|
||||
|
||||
logic [1:0] state;
|
||||
logic [2:0] downlink_fsm_state;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) begin
|
||||
state <= `IDLE;
|
||||
downlink_fsm_state <= 0;
|
||||
tx_data <= 0;
|
||||
tx_start <= 0;
|
||||
end
|
||||
else begin
|
||||
|
||||
case (state)
|
||||
`IDLE : begin
|
||||
fifo_input_ready <= 0;
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
|
||||
|
||||
end
|
||||
|
||||
`ARM : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// remove old samples if we're more than halfway full
|
||||
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
|
||||
|
||||
if(trigger) state <= `FILL;
|
||||
end
|
||||
|
||||
`FILL : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// don't pop anything out the FIFO
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
|
||||
end
|
||||
|
||||
`DOWNLINK : begin
|
||||
// place no samples into FIFO
|
||||
fifo_input_ready <= 0;
|
||||
|
||||
|
||||
case (downlink_fsm_state)
|
||||
0 : begin
|
||||
if (~fifo_empty) begin
|
||||
fifo_request_output <= 1;
|
||||
downlink_fsm_state <= 1;
|
||||
end
|
||||
|
||||
else state <= `IDLE;
|
||||
end
|
||||
|
||||
1 : begin
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (fifo_output_valid) begin
|
||||
tx_data <= fifo_data_out;
|
||||
tx_start <= 1;
|
||||
downlink_fsm_state <= 2;
|
||||
end
|
||||
end
|
||||
|
||||
2 : begin
|
||||
tx_start <= 0;
|
||||
|
||||
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
|
||||
end
|
||||
endcase
|
||||
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module fifo (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
input wire [WIDTH - 1:0] data_in,
|
||||
input wire input_ready,
|
||||
|
||||
input wire request_output,
|
||||
output logic [WIDTH - 1:0] data_out,
|
||||
output logic output_valid,
|
||||
|
||||
output logic [AW:0] size,
|
||||
output logic empty,
|
||||
output logic full
|
||||
);
|
||||
|
||||
parameter WIDTH = 8;
|
||||
parameter DEPTH = 4096;
|
||||
localparam AW = $clog2(DEPTH);
|
||||
|
||||
logic [AW:0] write_pointer;
|
||||
logic [AW:0] read_pointer;
|
||||
|
||||
logic empty_int;
|
||||
assign empty_int = (write_pointer[AW] == read_pointer[AW]);
|
||||
|
||||
logic full_or_empty;
|
||||
assign full_or_empty = (write_pointer[AW-1:0] == read_pointer[AW-1:0]);
|
||||
|
||||
assign full = full_or_empty & !empty_int;
|
||||
assign empty = full_or_empty & empty_int;
|
||||
assign size = write_pointer - read_pointer;
|
||||
|
||||
logic output_valid_pip_0;
|
||||
logic output_valid_pip_1;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if (input_ready && ~full)
|
||||
write_pointer <= write_pointer + 1'd1;
|
||||
|
||||
if (request_output && ~empty)
|
||||
read_pointer <= read_pointer + 1'd1;
|
||||
output_valid_pip_0 <= request_output;
|
||||
output_valid_pip_1 <= output_valid_pip_0;
|
||||
output_valid <= output_valid_pip_1;
|
||||
|
||||
if (rst) begin
|
||||
read_pointer <= 0;
|
||||
write_pointer <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(WIDTH),
|
||||
.RAM_DEPTH(DEPTH),
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
|
||||
|
||||
) buffer (
|
||||
|
||||
// write port
|
||||
.clka(clk),
|
||||
.rsta(rst),
|
||||
.ena(1),
|
||||
.addra(write_pointer),
|
||||
.dina(data_in),
|
||||
.wea(input_ready),
|
||||
.regcea(1),
|
||||
.douta(),
|
||||
|
||||
// read port
|
||||
.clkb(clk),
|
||||
.rstb(rst),
|
||||
.enb(1),
|
||||
.addrb(read_pointer),
|
||||
.dinb(),
|
||||
.web(0),
|
||||
.regceb(1),
|
||||
.doutb(data_out));
|
||||
endmodule
|
||||
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire [DATA_WIDTH-1:0] data,
|
||||
input wire start,
|
||||
|
||||
output logic busy,
|
||||
output logic txd
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH - 1:0] data_buf;
|
||||
|
||||
// make secondary logic for baudrate
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) baud_counter <= 0;
|
||||
else begin
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
busy <= 0;
|
||||
txd <= 1; // idle high
|
||||
end
|
||||
|
||||
// enter transmitting state logic
|
||||
// don't allow new requests to interrupt current
|
||||
// transfers
|
||||
if(start && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= data;
|
||||
end
|
||||
|
||||
|
||||
// transmitting state logic
|
||||
else if(baud_counter == 0 && busy) begin
|
||||
|
||||
if (bit_index == 0) begin
|
||||
txd <= 0;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
|
||||
txd <= data_buf[bit_index - 1];
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index == DATA_WIDTH + 1) begin
|
||||
txd <= 1;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index >= DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
|
||||
module uart_rx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire rxd,
|
||||
|
||||
output logic [DATA_WIDTH - 1:0] data,
|
||||
output logic ready,
|
||||
output logic busy
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH + 2 : 0] data_buf;
|
||||
|
||||
logic prev_rxd;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
prev_rxd <= rxd;
|
||||
ready <= 0;
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
data <= 0;
|
||||
busy <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// start receiving if we see a falling edge, and not already busy
|
||||
else if (prev_rxd && ~rxd && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// if we're actually receiving
|
||||
else if (busy) begin
|
||||
if (baud_counter == PRESCALER / 2) begin
|
||||
data_buf[bit_index] <= rxd;
|
||||
bit_index <= bit_index + 1;
|
||||
|
||||
if (bit_index == DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
|
||||
|
||||
if (rxd && ~data_buf[0]) begin
|
||||
data <= data_buf[DATA_WIDTH : 1];
|
||||
ready <= 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
// This code implements a parameterizable true dual port memory (both ports can read and write).
|
||||
// The behavior of this RAM is when data is written, the prior memory contents at the write
|
||||
// address are presented on the output port. If the output data is
|
||||
// not needed during writes or the last read value is desired to be retained,
|
||||
// it is suggested to use a no change RAM as it is more power efficient.
|
||||
// If a reset or enable is not necessary, it may be tied off or removed from the code.
|
||||
|
||||
module xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
parameter RAM_WIDTH = 18, // Specify RAM data width
|
||||
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
|
||||
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) (
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
|
||||
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
|
||||
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
|
||||
input clka, // Port A clock
|
||||
input clkb, // Port B clock
|
||||
input wea, // Port A write enable
|
||||
input web, // Port B write enable
|
||||
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
input rsta, // Port A output reset (does not affect memory contents)
|
||||
input rstb, // Port B output reset (does not affect memory contents)
|
||||
input regcea, // Port A output register enable
|
||||
input regceb, // Port B output register enable
|
||||
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
|
||||
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
|
||||
);
|
||||
|
||||
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
|
||||
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
|
||||
|
||||
//this loop below allows for rendering with iverilog simulations!
|
||||
/*
|
||||
integer idx;
|
||||
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
|
||||
wire [RAM_WIDTH-1:0] tmp;
|
||||
assign tmp = BRAM[idx];
|
||||
end
|
||||
*/
|
||||
|
||||
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
|
||||
generate
|
||||
if (INIT_FILE != "") begin: use_init_file
|
||||
initial
|
||||
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
|
||||
end else begin: init_bram_to_zero
|
||||
integer ram_index;
|
||||
initial
|
||||
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
|
||||
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
|
||||
end
|
||||
endgenerate
|
||||
integer idx;
|
||||
// initial begin
|
||||
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
|
||||
// $dumpvars(0, BRAM[idx]);
|
||||
// end
|
||||
// end
|
||||
always @(posedge clka)
|
||||
if (ena) begin
|
||||
if (wea)
|
||||
BRAM[addra] <= dina;
|
||||
ram_data_a <= BRAM[addra];
|
||||
end
|
||||
|
||||
always @(posedge clkb)
|
||||
if (enb) begin
|
||||
if (web)
|
||||
BRAM[addrb] <= dinb;
|
||||
ram_data_b <= BRAM[addrb];
|
||||
end
|
||||
|
||||
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
|
||||
generate
|
||||
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
|
||||
|
||||
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
|
||||
assign douta = ram_data_a;
|
||||
assign doutb = ram_data_b;
|
||||
|
||||
end else begin: output_register
|
||||
|
||||
// The following is a 2 clock cycle read latency with improve clock-to-out timing
|
||||
|
||||
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
|
||||
|
||||
always @(posedge clka)
|
||||
if (rsta)
|
||||
douta_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regcea)
|
||||
douta_reg <= ram_data_a;
|
||||
|
||||
always @(posedge clkb)
|
||||
if (rstb)
|
||||
doutb_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regceb)
|
||||
doutb_reg <= ram_data_b;
|
||||
|
||||
assign douta = douta_reg;
|
||||
assign doutb = doutb_reg;
|
||||
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// The following function calculates the address width based on specified RAM depth
|
||||
function integer clogb2;
|
||||
input integer depth;
|
||||
for (clogb2=0; depth>0; clogb2=clogb2+1)
|
||||
depth = depth >> 1;
|
||||
endfunction
|
||||
|
||||
endmodule
|
||||
|
||||
// The following is an instantiation template for xilinx_true_dual_port_read_first_2_clock_ram
|
||||
/*
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(18), // Specify RAM data width
|
||||
.RAM_DEPTH(1024), // Specify RAM depth (number of entries)
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
.INIT_FILE("") // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) your_instance_name (
|
||||
.addra(addra), // Port A address bus, width determined from RAM_DEPTH
|
||||
.addrb(addrb), // Port B address bus, width determined from RAM_DEPTH
|
||||
.dina(dina), // Port A RAM input data, width determined from RAM_WIDTH
|
||||
.dinb(dinb), // Port B RAM input data, width determined from RAM_WIDTH
|
||||
.clka(clka), // Port A clock
|
||||
.clkb(clkb), // Port B clock
|
||||
.wea(wea), // Port A write enable
|
||||
.web(web), // Port B write enable
|
||||
.ena(ena), // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
.enb(enb), // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
.rsta(rsta), // Port A output reset (does not affect memory contents)
|
||||
.rstb(rstb), // Port B output reset (does not affect memory contents)
|
||||
.regcea(regcea), // Port A output register enable
|
||||
.regceb(regceb), // Port B output register enable
|
||||
.douta(douta), // Port A RAM output data, width determined from RAM_WIDTH
|
||||
.doutb(doutb) // Port B RAM output data, width determined from RAM_WIDTH
|
||||
);
|
||||
*/
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -1,33 +0,0 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
`include "src/debug.sv"
|
||||
|
||||
module top_level (
|
||||
input wire clk,
|
||||
|
||||
input wire rs232_rx_ttl,
|
||||
output logic rs232_tx_ttl
|
||||
);
|
||||
|
||||
wire rst = 0;
|
||||
|
||||
// Signal Generator
|
||||
logic [7:0] count;
|
||||
always_ff @(posedge clk) count <= count + 1;
|
||||
|
||||
// debugger
|
||||
manta manta(
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.larry(count[0]),
|
||||
.curly(count[1]),
|
||||
.moe(count[2]),
|
||||
.shemp(count[3:0]),
|
||||
|
||||
.rxd(rs232_rx_ttl),
|
||||
.txd(rs232_tx_ttl));
|
||||
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
#!/bin/bash
|
||||
yosys -p 'synth_ice40 -top top_level -json top_level.json' src/top_level.sv
|
||||
nextpnr-ice40 --hx1k --json top_level.json --pcf pcf/top_level.pcf --asc top_level.asc
|
||||
icepack top_level.asc top_level.bin
|
||||
rm -f *.json
|
||||
rm -f *.asc
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
cores:
|
||||
my_io_core:
|
||||
type: io
|
||||
|
||||
outputs:
|
||||
LED0: 1
|
||||
LED1: 1
|
||||
LED2: 1
|
||||
LED3: 1
|
||||
LED4: 1
|
||||
|
||||
uart:
|
||||
port: "auto"
|
||||
baudrate: 115200
|
||||
clock_freq: 12000000
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
from manta import Manta
|
||||
from time import sleep
|
||||
|
||||
m = Manta('manta.yaml')
|
||||
|
||||
i = 0
|
||||
while True:
|
||||
i = (i+1) % 5
|
||||
|
||||
if(i==0):
|
||||
m.my_io_core.LED0.set(1)
|
||||
m.my_io_core.LED1.set(0)
|
||||
m.my_io_core.LED2.set(0)
|
||||
m.my_io_core.LED3.set(0)
|
||||
m.my_io_core.LED4.set(0)
|
||||
|
||||
if(i==1):
|
||||
m.my_io_core.LED0.set(0)
|
||||
m.my_io_core.LED1.set(1)
|
||||
m.my_io_core.LED2.set(0)
|
||||
m.my_io_core.LED3.set(0)
|
||||
m.my_io_core.LED4.set(0)
|
||||
|
||||
if(i==2):
|
||||
m.my_io_core.LED0.set(0)
|
||||
m.my_io_core.LED1.set(0)
|
||||
m.my_io_core.LED2.set(1)
|
||||
m.my_io_core.LED3.set(0)
|
||||
m.my_io_core.LED4.set(0)
|
||||
|
||||
if(i==3):
|
||||
m.my_io_core.LED0.set(0)
|
||||
m.my_io_core.LED1.set(0)
|
||||
m.my_io_core.LED2.set(0)
|
||||
m.my_io_core.LED3.set(1)
|
||||
m.my_io_core.LED4.set(0)
|
||||
|
||||
if(i==4):
|
||||
m.my_io_core.LED0.set(0)
|
||||
m.my_io_core.LED1.set(0)
|
||||
m.my_io_core.LED2.set(0)
|
||||
m.my_io_core.LED3.set(0)
|
||||
m.my_io_core.LED4.set(1)
|
||||
|
||||
sleep(0.1)
|
||||
|
|
@ -0,0 +1,580 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns/1ps
|
||||
|
||||
/*
|
||||
This manta definition was generated on 02 Apr 2023 at 23:00:06 by fischerm
|
||||
|
||||
If this breaks or if you've got dank formal verification memes,
|
||||
please contact fischerm [at] mit.edu
|
||||
|
||||
Provided under a GNU GPLv3 license. Go wild.
|
||||
|
||||
Here's an example instantiation of the Manta module you configured,
|
||||
feel free to copy-paste this into your source!
|
||||
|
||||
manta manta_inst (
|
||||
.clk(clk),
|
||||
|
||||
.rx(rx),
|
||||
.tx(tx),
|
||||
|
||||
.LED0(LED0),
|
||||
.LED1(LED1),
|
||||
.LED2(LED2),
|
||||
.LED3(LED3),
|
||||
.LED4(LED4));
|
||||
|
||||
*/
|
||||
|
||||
module manta (
|
||||
input wire clk,
|
||||
|
||||
input wire rx,
|
||||
output reg tx,
|
||||
|
||||
output reg LED0,
|
||||
output reg LED1,
|
||||
output reg LED2,
|
||||
output reg LED3,
|
||||
output reg LED4);
|
||||
|
||||
rx_uart #(.CLOCKS_PER_BAUD(104)) urx (
|
||||
.i_clk(clk),
|
||||
.i_uart_rx(rx),
|
||||
.o_wr(urx_brx_axiv),
|
||||
.o_data(urx_brx_axid));
|
||||
|
||||
logic [7:0] urx_brx_axid;
|
||||
logic urx_brx_axiv;
|
||||
|
||||
bridge_rx brx (
|
||||
.clk(clk),
|
||||
|
||||
.rx_data(urx_brx_axid),
|
||||
.rx_valid(urx_brx_axiv),
|
||||
|
||||
.addr_o(brx_my_io_core_addr),
|
||||
.wdata_o(brx_my_io_core_wdata),
|
||||
.rw_o(brx_my_io_core_rw),
|
||||
.valid_o(brx_my_io_core_valid));
|
||||
|
||||
reg [15:0] brx_my_io_core_addr;
|
||||
reg [15:0] brx_my_io_core_wdata;
|
||||
reg brx_my_io_core_rw;
|
||||
reg brx_my_io_core_valid;
|
||||
|
||||
my_io_core my_io_core_inst(
|
||||
.clk(clk),
|
||||
|
||||
// ports
|
||||
.LED0(LED0),
|
||||
.LED1(LED1),
|
||||
.LED2(LED2),
|
||||
.LED3(LED3),
|
||||
.LED4(LED4),
|
||||
|
||||
// input port
|
||||
.addr_i(brx_my_io_core_addr),
|
||||
.wdata_i(brx_my_io_core_wdata),
|
||||
.rdata_i(),
|
||||
.rw_i(brx_my_io_core_rw),
|
||||
.valid_i(brx_my_io_core_valid),
|
||||
|
||||
// output port
|
||||
.addr_o(),
|
||||
.wdata_o(),
|
||||
.rdata_o(my_io_core_btx_rdata),
|
||||
.rw_o(my_io_core_btx_rw),
|
||||
.valid_o(my_io_core_btx_valid)
|
||||
);
|
||||
|
||||
reg [15:0] my_io_core_btx_rdata;
|
||||
reg my_io_core_btx_rw;
|
||||
reg my_io_core_btx_valid;
|
||||
|
||||
bridge_tx btx (
|
||||
.clk(clk),
|
||||
|
||||
.rdata_i(my_io_core_btx_rdata),
|
||||
.rw_i(my_io_core_btx_rw),
|
||||
.valid_i(my_io_core_btx_valid),
|
||||
|
||||
.ready_i(utx_btx_ready),
|
||||
.data_o(btx_utx_data),
|
||||
.valid_o(btx_utx_valid));
|
||||
|
||||
logic utx_btx_ready;
|
||||
logic btx_utx_valid;
|
||||
logic [7:0] btx_utx_data;
|
||||
|
||||
uart_tx #(.CLOCKS_PER_BAUD(104)) utx (
|
||||
.clk(clk),
|
||||
|
||||
.data(btx_utx_data),
|
||||
.valid(btx_utx_valid),
|
||||
.ready(utx_btx_ready),
|
||||
|
||||
.tx(tx));
|
||||
endmodule
|
||||
|
||||
/* ---- Module Definitions ---- */
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Filename: rxuart.v
|
||||
//
|
||||
// Project: Verilog Tutorial Example file
|
||||
//
|
||||
// Purpose: Receives a character from a UART (serial port) wire. Key
|
||||
// features of this core include:
|
||||
//
|
||||
// - The baud rate is constant, and set by the CLOCKS_PER_BAUD parameter.
|
||||
// To be successful, one baud interval must be (approximately)
|
||||
// equal to CLOCKS_PER_BAUD / CLOCK_RATE_HZ seconds long.
|
||||
//
|
||||
// - The protocol used is the basic 8N1: 8 data bits, 1 stop bit, and no
|
||||
// parity.
|
||||
//
|
||||
// - This core has no reset
|
||||
// - This core has no error detection for frame errors
|
||||
// - This core cannot detect, report, or even recover from, a break
|
||||
// condition on the line. A break condition is defined as a
|
||||
// period of time where the i_uart_rx line is held low for longer
|
||||
// than one data byte (10 baud intervals)
|
||||
//
|
||||
// - There's no clock rate detection in this core
|
||||
//
|
||||
// Perhaps one of the nicer features of this core is that it (can be)
|
||||
// formally verified. It depends upon a separate (formally verified)
|
||||
// transmit core for this purpose.
|
||||
//
|
||||
// As with the other cores within this tutorial, there may (or may not) be
|
||||
// bugs within this design for you to find.
|
||||
//
|
||||
//
|
||||
// Creator: Dan Gisselquist, Ph.D.
|
||||
// Gisselquist Technology, LLC
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Written and distributed by Gisselquist Technology, LLC
|
||||
//
|
||||
// This program is hereby granted to the public domain.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
//
|
||||
|
||||
|
||||
module rx_uart(
|
||||
input wire i_clk,
|
||||
input wire i_uart_rx,
|
||||
output reg o_wr,
|
||||
output reg [7:0] o_data);
|
||||
|
||||
parameter [15:0] CLOCKS_PER_BAUD = 868;
|
||||
localparam [3:0] IDLE = 4'h0;
|
||||
localparam [3:0] BIT_ZERO = 4'h1;
|
||||
// localparam [3:0] BIT_ONE = 4'h2;
|
||||
// localparam [3:0] BIT_TWO = 4'h3;
|
||||
// localparam [3:0] BIT_THREE = 4'h4;
|
||||
// localparam [3:0] BIT_FOUR = 4'h5;
|
||||
// localparam [3:0] BIT_FIVE = 4'h6;
|
||||
// localparam [3:0] BIT_SIX = 4'h7;
|
||||
// localparam [3:0] BIT_SEVEN = 4'h8;
|
||||
localparam [3:0] STOP_BIT = 4'h9;
|
||||
|
||||
reg [3:0] state;
|
||||
reg [15:0] baud_counter;
|
||||
reg zero_baud_counter;
|
||||
|
||||
// 2FF Synchronizer
|
||||
//
|
||||
reg ck_uart;
|
||||
reg q_uart;
|
||||
initial { ck_uart, q_uart } = -1;
|
||||
always @(posedge i_clk)
|
||||
{ ck_uart, q_uart } <= { q_uart, i_uart_rx };
|
||||
|
||||
initial state = IDLE;
|
||||
initial baud_counter = 0;
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (state == IDLE) begin
|
||||
state <= IDLE;
|
||||
baud_counter <= 0;
|
||||
if (!ck_uart) begin
|
||||
state <= BIT_ZERO;
|
||||
baud_counter <= CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2-1'b1;
|
||||
end
|
||||
end
|
||||
|
||||
else if (zero_baud_counter) begin
|
||||
state <= state + 1;
|
||||
baud_counter <= CLOCKS_PER_BAUD-1'b1;
|
||||
if (state == STOP_BIT) begin
|
||||
state <= IDLE;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
else baud_counter <= baud_counter - 1'b1;
|
||||
|
||||
always @(*)
|
||||
zero_baud_counter = (baud_counter == 0);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if ((zero_baud_counter)&&(state != STOP_BIT))
|
||||
o_data <= { ck_uart, o_data[7:1] };
|
||||
|
||||
initial o_wr = 1'b0;
|
||||
always @(posedge i_clk)
|
||||
o_wr <= ((zero_baud_counter)&&(state == STOP_BIT));
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
module bridge_rx(
|
||||
input wire clk,
|
||||
|
||||
input wire[7:0] rx_data,
|
||||
input wire rx_valid,
|
||||
|
||||
output reg[15:0] addr_o,
|
||||
output reg[15:0] wdata_o,
|
||||
output reg rw_o,
|
||||
output reg valid_o
|
||||
);
|
||||
|
||||
|
||||
// this is a hack, the FSM needs to be updated
|
||||
// but this will bypass it for now
|
||||
parameter ready_i = 1;
|
||||
|
||||
parameter ADDR_WIDTH = 0;
|
||||
parameter DATA_WIDTH = 0;
|
||||
|
||||
localparam PREAMBLE = 8'h4D;
|
||||
localparam CR = 8'h0D;
|
||||
localparam LF = 8'h0A;
|
||||
|
||||
localparam ACQUIRE = 0;
|
||||
localparam TRANSMIT = 1;
|
||||
localparam ERROR = 2;
|
||||
|
||||
reg [1:0] state;
|
||||
reg [3:0] bytes_received;
|
||||
|
||||
// no global resets!
|
||||
initial begin
|
||||
addr_o = 0;
|
||||
wdata_o = 0;
|
||||
rw_o = 0;
|
||||
valid_o = 0;
|
||||
bytes_received = 0;
|
||||
state = ACQUIRE;
|
||||
end
|
||||
|
||||
reg [3:0] rx_data_decoded;
|
||||
reg rx_data_is_0_thru_9;
|
||||
reg rx_data_is_A_thru_F;
|
||||
|
||||
always @(*) begin
|
||||
rx_data_is_0_thru_9 = (rx_data >= 8'h30) & (rx_data <= 8'h39);
|
||||
rx_data_is_A_thru_F = (rx_data >= 8'h41) & (rx_data <= 8'h46);
|
||||
|
||||
if (rx_data_is_0_thru_9) rx_data_decoded = rx_data - 8'h30;
|
||||
else if (rx_data_is_A_thru_F) rx_data_decoded = rx_data - 8'h41 + 'd10;
|
||||
else rx_data_decoded = 0;
|
||||
end
|
||||
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (state == ACQUIRE) begin
|
||||
if(rx_valid) begin
|
||||
|
||||
if (bytes_received == 0) begin
|
||||
if(rx_data == PREAMBLE) bytes_received <= 1;
|
||||
end
|
||||
|
||||
else if( (bytes_received >= 1) & (bytes_received <= 4) ) begin
|
||||
// only advance if byte is valid hex digit
|
||||
if(rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
addr_o <= (addr_o << 4) | rx_data_decoded;
|
||||
bytes_received <= bytes_received + 1;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if( bytes_received == 5) begin
|
||||
if( (rx_data == CR) | (rx_data == LF)) begin
|
||||
valid_o <= 1;
|
||||
rw_o = 0;
|
||||
bytes_received <= 0;
|
||||
state <= TRANSMIT;
|
||||
end
|
||||
|
||||
else if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
bytes_received <= bytes_received + 1;
|
||||
wdata_o <= (wdata_o << 4) | rx_data_decoded;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if ( (bytes_received >= 6) & (bytes_received <= 8) ) begin
|
||||
|
||||
if (rx_data_is_0_thru_9 | rx_data_is_A_thru_F) begin
|
||||
wdata_o <= (wdata_o << 4) | rx_data_decoded;
|
||||
bytes_received <= bytes_received + 1;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
|
||||
else if (bytes_received == 9) begin
|
||||
bytes_received <= 0;
|
||||
if( (rx_data == CR) | (rx_data == LF)) begin
|
||||
valid_o <= 1;
|
||||
rw_o <= 1;
|
||||
state <= TRANSMIT;
|
||||
end
|
||||
|
||||
else state <= ERROR;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
else if (state == TRANSMIT) begin
|
||||
if(ready_i) begin
|
||||
valid_o <= 0;
|
||||
state <= ACQUIRE;
|
||||
end
|
||||
|
||||
if(rx_valid) begin
|
||||
if ( (rx_data != CR) & (rx_data != LF)) begin
|
||||
valid_o <= 0;
|
||||
state <= ERROR;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
module my_io_core (
|
||||
input wire clk,
|
||||
|
||||
// ports
|
||||
output reg LED0,
|
||||
output reg LED1,
|
||||
output reg LED2,
|
||||
output reg LED3,
|
||||
output reg LED4,
|
||||
|
||||
// input port
|
||||
input wire [15:0] addr_i,
|
||||
input wire [15:0] wdata_i,
|
||||
input wire [15:0] rdata_i,
|
||||
input wire rw_i,
|
||||
input wire valid_i,
|
||||
|
||||
// output port
|
||||
output reg [15:0] addr_o,
|
||||
output reg [15:0] wdata_o,
|
||||
output reg [15:0] rdata_o,
|
||||
output reg rw_o,
|
||||
output reg valid_o
|
||||
);
|
||||
|
||||
parameter BASE_ADDR = 0;
|
||||
always @(posedge clk) begin
|
||||
addr_o <= addr_i;
|
||||
wdata_o <= wdata_i;
|
||||
rdata_o <= rdata_i;
|
||||
rw_o <= rw_i;
|
||||
valid_o <= valid_i;
|
||||
rdata_o <= rdata_i;
|
||||
|
||||
|
||||
// check if address is valid
|
||||
if( (valid_i) && (addr_i >= BASE_ADDR) && (addr_i <= BASE_ADDR + 4)) begin
|
||||
|
||||
if(!rw_i) begin // reads
|
||||
case (addr_i)
|
||||
0: rdata_o <= {15'b0, LED0};
|
||||
1: rdata_o <= {15'b0, LED1};
|
||||
2: rdata_o <= {15'b0, LED2};
|
||||
3: rdata_o <= {15'b0, LED3};
|
||||
4: rdata_o <= {15'b0, LED4};
|
||||
endcase
|
||||
end
|
||||
|
||||
else begin // writes
|
||||
case (addr_i)
|
||||
0: LED0 <= wdata_i[0];
|
||||
1: LED1 <= wdata_i[0];
|
||||
2: LED2 <= wdata_i[0];
|
||||
3: LED3 <= wdata_i[0];
|
||||
4: LED4 <= wdata_i[0];
|
||||
endcase
|
||||
end
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
module bridge_tx(
|
||||
input wire clk,
|
||||
|
||||
input wire [15:0] rdata_i,
|
||||
input wire rw_i,
|
||||
input wire valid_i,
|
||||
|
||||
output reg [7:0] data_o,
|
||||
input wire ready_i,
|
||||
output reg valid_o);
|
||||
|
||||
localparam PREAMBLE = 8'h4D;
|
||||
localparam CR = 8'h0D;
|
||||
localparam LF = 8'h0A;
|
||||
|
||||
logic busy;
|
||||
logic [15:0] buffer;
|
||||
logic [3:0] byte_counter;
|
||||
|
||||
initial begin
|
||||
busy = 0;
|
||||
buffer = 0;
|
||||
byte_counter = 0;
|
||||
valid_o = 0;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (!busy) begin
|
||||
if (valid_i && !rw_i) begin
|
||||
busy <= 1;
|
||||
buffer <= rdata_i;
|
||||
byte_counter <= 0;
|
||||
valid_o <= 1;
|
||||
end
|
||||
end
|
||||
|
||||
if (busy) begin
|
||||
|
||||
if(ready_i) begin
|
||||
byte_counter <= byte_counter + 1;
|
||||
|
||||
if (byte_counter > 5) begin
|
||||
byte_counter <= 0;
|
||||
|
||||
// stop transmitting if we don't have both valid and read
|
||||
if ( !(valid_i && !rw_i) ) begin
|
||||
busy <= 0;
|
||||
valid_o <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(*) begin
|
||||
case (byte_counter)
|
||||
0: data_o = PREAMBLE;
|
||||
1: data_o = (buffer[15:12] < 10) ? (buffer[15:12] + 8'h30) : (buffer[15:12] + 8'h41 - 'd10);
|
||||
2: data_o = (buffer[11:8] < 10) ? (buffer[11:8] + 8'h30) : (buffer[11:8] + 8'h41 - 'd10);
|
||||
3: data_o = (buffer[7:4] < 10) ? (buffer[7:4] + 8'h30) : (buffer[7:4] + 8'h41 - 'd10);
|
||||
4: data_o = (buffer[3:0] < 10) ? (buffer[3:0] + 8'h30) : (buffer[3:0] + 8'h41 - 'd10);
|
||||
5: data_o = CR;
|
||||
6: data_o = LF;
|
||||
default: data_o = 0;
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
|
||||
input wire [7:0] data,
|
||||
input wire valid,
|
||||
output reg busy,
|
||||
output reg ready,
|
||||
|
||||
output reg tx);
|
||||
|
||||
// this transmitter only works with 8N1 serial, at configurable baudrate
|
||||
parameter CLOCKS_PER_BAUD = 868;
|
||||
|
||||
reg [9:0] baud_counter;
|
||||
reg [8:0] data_buf;
|
||||
reg [3:0] bit_index;
|
||||
|
||||
initial begin
|
||||
baud_counter = CLOCKS_PER_BAUD;
|
||||
data_buf = 0;
|
||||
bit_index = 0;
|
||||
busy = 0;
|
||||
ready = 1;
|
||||
tx = 1;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (valid && !busy) begin
|
||||
data_buf <= {1'b1, data};
|
||||
bit_index <= 0;
|
||||
tx <= 0; //wafflestomp that start bit
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1;
|
||||
busy <= 1;
|
||||
ready <= 0;
|
||||
end
|
||||
|
||||
else if (busy) begin
|
||||
baud_counter <= baud_counter - 1;
|
||||
|
||||
ready <= (baud_counter == 1) && (bit_index == 9);
|
||||
|
||||
if (baud_counter == 0) begin
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1;
|
||||
|
||||
|
||||
if (bit_index == 9) begin
|
||||
if(valid) begin
|
||||
data_buf <= {1'b1, data};
|
||||
bit_index <= 0;
|
||||
tx <= 0;
|
||||
end
|
||||
|
||||
else begin
|
||||
busy <= 0;
|
||||
ready <= 1;
|
||||
end
|
||||
// if valid happens here then we should bool
|
||||
end
|
||||
|
||||
else begin
|
||||
tx <= data_buf[bit_index];
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
`include "src/manta.v"
|
||||
|
||||
module top_level (
|
||||
input wire clk,
|
||||
|
||||
output logic LED0,
|
||||
output logic LED1,
|
||||
output logic LED2,
|
||||
output logic LED3,
|
||||
output logic LED4,
|
||||
|
||||
input wire rs232_rx_ttl,
|
||||
output logic rs232_tx_ttl
|
||||
);
|
||||
|
||||
manta manta_inst (
|
||||
.clk(clk),
|
||||
|
||||
.rx(rs232_rx_ttl),
|
||||
.tx(rs232_tx_ttl),
|
||||
|
||||
.LED0(LED0),
|
||||
.LED1(LED1),
|
||||
.LED2(LED2),
|
||||
.LED3(LED3),
|
||||
.LED4(LED4));
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
Binary file not shown.
Loading…
Reference in New Issue