package for PyPI
This commit is contained in:
parent
b2ae32ef69
commit
02fc53cbf7
|
|
@ -2,3 +2,4 @@
|
|||
*.bit
|
||||
*.vcd
|
||||
*.out
|
||||
dist/
|
||||
|
|
|
|||
|
|
@ -1,612 +1,33 @@
|
|||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
/*
|
||||
This manta definition was autogenerated on 09 Feb 2023 at 15:26:40 by fischerm
|
||||
module top_level (
|
||||
input wire clk,
|
||||
input wire btnc,
|
||||
input wire btnu,
|
||||
input wire [15:0] sw,
|
||||
|
||||
If this breaks or if you've got dank formal verification memes,
|
||||
please contact fischerm [at] mit.edu.
|
||||
*/
|
||||
output logic [15:0] led,
|
||||
input wire uart_txd_in,
|
||||
output logic uart_rxd_out
|
||||
);
|
||||
|
||||
// Signal Generator
|
||||
logic [7:0] count;
|
||||
always_ff @(posedge clk) count <= count + 1;
|
||||
|
||||
`define IDLE 0
|
||||
`define ARM 1
|
||||
`define FILL 2
|
||||
`define DOWNLINK 3
|
||||
|
||||
`define ARM_BYTE 8'b00110000
|
||||
|
||||
module manta (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
/* Begin autogenerated probe definitions */
|
||||
input wire larry,
|
||||
input wire curly,
|
||||
input wire moe,
|
||||
input wire [3:0] shemp,
|
||||
/* End autogenerated probe definitions */
|
||||
|
||||
input wire rxd,
|
||||
output logic txd);
|
||||
|
||||
/* Begin autogenerated parameters */
|
||||
localparam SAMPLE_WIDTH = 7;
|
||||
localparam SAMPLE_DEPTH = 4096;
|
||||
|
||||
localparam DATA_WIDTH = 8;
|
||||
localparam BAUDRATE = 115200;
|
||||
localparam CLK_FREQ_HZ = 100000000;
|
||||
|
||||
logic trigger;
|
||||
assign trigger = (larry && curly && ~moe);
|
||||
|
||||
logic [SAMPLE_WIDTH - 1 : 0] concat;
|
||||
assign concat = {larry, curly, moe, shemp};
|
||||
/* End autogenerated parameters */
|
||||
|
||||
|
||||
// FIFO
|
||||
logic [7:0] fifo_data_in;
|
||||
logic fifo_input_ready;
|
||||
|
||||
logic fifo_request_output;
|
||||
logic [7:0] fifo_data_out;
|
||||
logic fifo_output_valid;
|
||||
|
||||
logic [11:0] fifo_size;
|
||||
logic fifo_empty;
|
||||
logic fifo_full;
|
||||
|
||||
fifo #(
|
||||
.WIDTH(SAMPLE_WIDTH),
|
||||
.DEPTH(SAMPLE_DEPTH)
|
||||
) fifo (
|
||||
// debugger
|
||||
manta manta(
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.rst(btnc),
|
||||
.larry(count[0]),
|
||||
.curly(count[1]),
|
||||
.moe(count[2]),
|
||||
.shemp(count[3:0]),
|
||||
|
||||
.rxd(uart_txd_in),
|
||||
.txd(uart_rxd_out));
|
||||
|
||||
.data_in(fifo_data_in),
|
||||
.input_ready(fifo_input_ready),
|
||||
|
||||
.request_output(fifo_request_output),
|
||||
.data_out(fifo_data_out),
|
||||
.output_valid(fifo_output_valid),
|
||||
|
||||
.size(fifo_size),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full));
|
||||
|
||||
// Serial interface
|
||||
logic tx_start;
|
||||
logic [7:0] tx_data;
|
||||
logic tx_busy;
|
||||
|
||||
logic [7:0] rx_data;
|
||||
logic rx_ready;
|
||||
logic rx_busy;
|
||||
|
||||
|
||||
uart_tx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
tx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.start(tx_start),
|
||||
.data(tx_data),
|
||||
|
||||
.busy(tx_busy),
|
||||
.txd(txd));
|
||||
|
||||
uart_rx #(
|
||||
.DATA_WIDTH(DATA_WIDTH),
|
||||
.CLK_FREQ_HZ(CLK_FREQ_HZ),
|
||||
.BAUDRATE(BAUDRATE))
|
||||
rx (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.rxd(rxd),
|
||||
|
||||
.data(rx_data),
|
||||
.ready(rx_ready),
|
||||
.busy(rx_busy));
|
||||
|
||||
|
||||
/* State Machine */
|
||||
/*
|
||||
|
||||
IDLE:
|
||||
- literally nothing is happening. the FIFO isn't being written to or read from. it should be empty.
|
||||
- an arm command over serial is what brings us into the ARM state
|
||||
|
||||
ARM:
|
||||
- popping things onto FIFO. if the fifo is halfway full, we pop them off too.
|
||||
- meeting the trigger condition is what moves us into the filing state
|
||||
|
||||
FILL:
|
||||
- popping things onto FIFO, until it's full. once it is full, we move into the downlinking state
|
||||
|
||||
DOWNLINK:
|
||||
- popping thing off of the FIFO until it's empty. once it's empty, we move back into the IDLE state
|
||||
*/
|
||||
|
||||
/* Downlink State Machine Controller */
|
||||
/*
|
||||
|
||||
- manta enters the downlink state
|
||||
- set fifo_output_request high for a clock cycle
|
||||
- when fifo_output_valid goes high, send fifo_data_out across the line
|
||||
- do nothing until tx_busy goes low
|
||||
- goto step 2
|
||||
|
||||
*/
|
||||
|
||||
logic [1:0] state;
|
||||
logic [2:0] downlink_fsm_state;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) begin
|
||||
state <= `IDLE;
|
||||
downlink_fsm_state <= 0;
|
||||
tx_data <= 0;
|
||||
tx_start <= 0;
|
||||
end
|
||||
else begin
|
||||
|
||||
case (state)
|
||||
`IDLE : begin
|
||||
fifo_input_ready <= 0;
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (rx_ready && rx_data == `ARM_BYTE) state <= `ARM;
|
||||
|
||||
end
|
||||
|
||||
`ARM : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// remove old samples if we're more than halfway full
|
||||
fifo_request_output <= (fifo_size >= SAMPLE_DEPTH / 2);
|
||||
|
||||
if(trigger) state <= `FILL;
|
||||
end
|
||||
|
||||
`FILL : begin
|
||||
// place samples into FIFO
|
||||
fifo_input_ready <= 1;
|
||||
fifo_data_in <= concat;
|
||||
|
||||
// don't pop anything out the FIFO
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if(fifo_size == SAMPLE_DEPTH - 1) state <= `DOWNLINK;
|
||||
end
|
||||
|
||||
`DOWNLINK : begin
|
||||
// place no samples into FIFO
|
||||
fifo_input_ready <= 0;
|
||||
|
||||
|
||||
case (downlink_fsm_state)
|
||||
0 : begin
|
||||
if (~fifo_empty) begin
|
||||
fifo_request_output <= 1;
|
||||
downlink_fsm_state <= 1;
|
||||
end
|
||||
|
||||
else state <= `IDLE;
|
||||
end
|
||||
|
||||
1 : begin
|
||||
fifo_request_output <= 0;
|
||||
|
||||
if (fifo_output_valid) begin
|
||||
tx_data <= fifo_data_out;
|
||||
tx_start <= 1;
|
||||
downlink_fsm_state <= 2;
|
||||
end
|
||||
end
|
||||
|
||||
2 : begin
|
||||
tx_start <= 0;
|
||||
|
||||
if (~tx_busy && ~tx_start) downlink_fsm_state <= 0;
|
||||
end
|
||||
endcase
|
||||
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
`default_nettype wire`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
module fifo (
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
|
||||
input wire [WIDTH - 1:0] data_in,
|
||||
input wire input_ready,
|
||||
|
||||
input wire request_output,
|
||||
output logic [WIDTH - 1:0] data_out,
|
||||
output logic output_valid,
|
||||
|
||||
output logic [AW:0] size,
|
||||
output logic empty,
|
||||
output logic full
|
||||
);
|
||||
|
||||
parameter WIDTH = 8;
|
||||
parameter DEPTH = 4096;
|
||||
localparam AW = $clog2(DEPTH);
|
||||
|
||||
logic [AW:0] write_pointer;
|
||||
logic [AW:0] read_pointer;
|
||||
|
||||
logic empty_int;
|
||||
assign empty_int = (write_pointer[AW] == read_pointer[AW]);
|
||||
|
||||
logic full_or_empty;
|
||||
assign full_or_empty = (write_pointer[AW-1:0] == read_pointer[AW-1:0]);
|
||||
|
||||
assign full = full_or_empty & !empty_int;
|
||||
assign empty = full_or_empty & empty_int;
|
||||
assign size = write_pointer - read_pointer;
|
||||
|
||||
logic output_valid_pip_0;
|
||||
logic output_valid_pip_1;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (input_ready && ~full)
|
||||
write_pointer <= write_pointer + 1'd1;
|
||||
|
||||
if (request_output && ~empty)
|
||||
read_pointer <= read_pointer + 1'd1;
|
||||
output_valid_pip_0 <= request_output;
|
||||
output_valid_pip_1 <= output_valid_pip_0;
|
||||
output_valid <= output_valid_pip_1;
|
||||
|
||||
if (rst) begin
|
||||
read_pointer <= 0;
|
||||
write_pointer <= 0;
|
||||
end
|
||||
end
|
||||
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(WIDTH),
|
||||
.RAM_DEPTH(DEPTH),
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE")
|
||||
|
||||
) buffer (
|
||||
|
||||
// write port
|
||||
.clka(clk),
|
||||
.rsta(rst),
|
||||
.ena(1),
|
||||
.addra(write_pointer),
|
||||
.dina(data_in),
|
||||
.wea(input_ready),
|
||||
.regcea(1),
|
||||
.douta(),
|
||||
|
||||
// read port
|
||||
.clkb(clk),
|
||||
.rstb(rst),
|
||||
.enb(1),
|
||||
.addrb(read_pointer),
|
||||
.dinb(),
|
||||
.web(0),
|
||||
.regceb(1),
|
||||
.doutb(data_out));
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
|
||||
module uart_tx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire [DATA_WIDTH-1:0] data,
|
||||
input wire start,
|
||||
|
||||
output logic busy,
|
||||
output logic txd
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH - 1:0] data_buf;
|
||||
|
||||
// make secondary logic for baudrate
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) baud_counter <= 0;
|
||||
else begin
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
busy <= 0;
|
||||
txd <= 1; // idle high
|
||||
end
|
||||
|
||||
// enter transmitting state logic
|
||||
// don't allow new requests to interrupt current
|
||||
// transfers
|
||||
if(start && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= data;
|
||||
end
|
||||
|
||||
|
||||
// transmitting state logic
|
||||
else if(baud_counter == 0 && busy) begin
|
||||
|
||||
if (bit_index == 0) begin
|
||||
txd <= 0;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if ((bit_index < DATA_WIDTH + 1) && (bit_index > 0)) begin
|
||||
txd <= data_buf[bit_index - 1];
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index == DATA_WIDTH + 1) begin
|
||||
txd <= 1;
|
||||
bit_index <= bit_index + 1;
|
||||
end
|
||||
|
||||
else if (bit_index >= DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
|
||||
`default_nettype wire
|
||||
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
// This code implements a parameterizable true dual port memory (both ports can read and write).
|
||||
// The behavior of this RAM is when data is written, the prior memory contents at the write
|
||||
// address are presented on the output port. If the output data is
|
||||
// not needed during writes or the last read value is desired to be retained,
|
||||
// it is suggested to use a no change RAM as it is more power efficient.
|
||||
// If a reset or enable is not necessary, it may be tied off or removed from the code.
|
||||
|
||||
module xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
parameter RAM_WIDTH = 18, // Specify RAM data width
|
||||
parameter RAM_DEPTH = 1024, // Specify RAM depth (number of entries)
|
||||
parameter RAM_PERFORMANCE = "HIGH_PERFORMANCE", // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
parameter INIT_FILE = "" // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) (
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addra, // Port A address bus, width determined from RAM_DEPTH
|
||||
input [clogb2(RAM_DEPTH-1)-1:0] addrb, // Port B address bus, width determined from RAM_DEPTH
|
||||
input [RAM_WIDTH-1:0] dina, // Port A RAM input data
|
||||
input [RAM_WIDTH-1:0] dinb, // Port B RAM input data
|
||||
input clka, // Port A clock
|
||||
input clkb, // Port B clock
|
||||
input wea, // Port A write enable
|
||||
input web, // Port B write enable
|
||||
input ena, // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
input enb, // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
input rsta, // Port A output reset (does not affect memory contents)
|
||||
input rstb, // Port B output reset (does not affect memory contents)
|
||||
input regcea, // Port A output register enable
|
||||
input regceb, // Port B output register enable
|
||||
output [RAM_WIDTH-1:0] douta, // Port A RAM output data
|
||||
output [RAM_WIDTH-1:0] doutb // Port B RAM output data
|
||||
);
|
||||
|
||||
reg [RAM_WIDTH-1:0] BRAM [RAM_DEPTH-1:0];
|
||||
reg [RAM_WIDTH-1:0] ram_data_a = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] ram_data_b = {RAM_WIDTH{1'b0}};
|
||||
|
||||
//this loop below allows for rendering with iverilog simulations!
|
||||
/*
|
||||
integer idx;
|
||||
for(idx = 0; idx < RAM_DEPTH; idx = idx+1) begin: cats
|
||||
wire [RAM_WIDTH-1:0] tmp;
|
||||
assign tmp = BRAM[idx];
|
||||
end
|
||||
*/
|
||||
|
||||
// The following code either initializes the memory values to a specified file or to all zeros to match hardware
|
||||
generate
|
||||
if (INIT_FILE != "") begin: use_init_file
|
||||
initial
|
||||
$readmemh(INIT_FILE, BRAM, 0, RAM_DEPTH-1);
|
||||
end else begin: init_bram_to_zero
|
||||
integer ram_index;
|
||||
initial
|
||||
for (ram_index = 0; ram_index < RAM_DEPTH; ram_index = ram_index + 1)
|
||||
BRAM[ram_index] = {RAM_WIDTH{1'b0}};
|
||||
end
|
||||
endgenerate
|
||||
integer idx;
|
||||
// initial begin
|
||||
// for (idx = 0; idx < RAM_DEPTH; idx = idx + 1) begin
|
||||
// $dumpvars(0, BRAM[idx]);
|
||||
// end
|
||||
// end
|
||||
always @(posedge clka)
|
||||
if (ena) begin
|
||||
if (wea)
|
||||
BRAM[addra] <= dina;
|
||||
ram_data_a <= BRAM[addra];
|
||||
end
|
||||
|
||||
always @(posedge clkb)
|
||||
if (enb) begin
|
||||
if (web)
|
||||
BRAM[addrb] <= dinb;
|
||||
ram_data_b <= BRAM[addrb];
|
||||
end
|
||||
|
||||
// The following code generates HIGH_PERFORMANCE (use output register) or LOW_LATENCY (no output register)
|
||||
generate
|
||||
if (RAM_PERFORMANCE == "LOW_LATENCY") begin: no_output_register
|
||||
|
||||
// The following is a 1 clock cycle read latency at the cost of a longer clock-to-out timing
|
||||
assign douta = ram_data_a;
|
||||
assign doutb = ram_data_b;
|
||||
|
||||
end else begin: output_register
|
||||
|
||||
// The following is a 2 clock cycle read latency with improve clock-to-out timing
|
||||
|
||||
reg [RAM_WIDTH-1:0] douta_reg = {RAM_WIDTH{1'b0}};
|
||||
reg [RAM_WIDTH-1:0] doutb_reg = {RAM_WIDTH{1'b0}};
|
||||
|
||||
always @(posedge clka)
|
||||
if (rsta)
|
||||
douta_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regcea)
|
||||
douta_reg <= ram_data_a;
|
||||
|
||||
always @(posedge clkb)
|
||||
if (rstb)
|
||||
doutb_reg <= {RAM_WIDTH{1'b0}};
|
||||
else if (regceb)
|
||||
doutb_reg <= ram_data_b;
|
||||
|
||||
assign douta = douta_reg;
|
||||
assign doutb = doutb_reg;
|
||||
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// The following function calculates the address width based on specified RAM depth
|
||||
function integer clogb2;
|
||||
input integer depth;
|
||||
for (clogb2=0; depth>0; clogb2=clogb2+1)
|
||||
depth = depth >> 1;
|
||||
endfunction
|
||||
|
||||
endmodule
|
||||
|
||||
// The following is an instantiation template for xilinx_true_dual_port_read_first_2_clock_ram
|
||||
/*
|
||||
// Xilinx True Dual Port RAM, Read First, Dual Clock
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(18), // Specify RAM data width
|
||||
.RAM_DEPTH(1024), // Specify RAM depth (number of entries)
|
||||
.RAM_PERFORMANCE("HIGH_PERFORMANCE"), // Select "HIGH_PERFORMANCE" or "LOW_LATENCY"
|
||||
.INIT_FILE("") // Specify name/location of RAM initialization file if using one (leave blank if not)
|
||||
) your_instance_name (
|
||||
.addra(addra), // Port A address bus, width determined from RAM_DEPTH
|
||||
.addrb(addrb), // Port B address bus, width determined from RAM_DEPTH
|
||||
.dina(dina), // Port A RAM input data, width determined from RAM_WIDTH
|
||||
.dinb(dinb), // Port B RAM input data, width determined from RAM_WIDTH
|
||||
.clka(clka), // Port A clock
|
||||
.clkb(clkb), // Port B clock
|
||||
.wea(wea), // Port A write enable
|
||||
.web(web), // Port B write enable
|
||||
.ena(ena), // Port A RAM Enable, for additional power savings, disable port when not in use
|
||||
.enb(enb), // Port B RAM Enable, for additional power savings, disable port when not in use
|
||||
.rsta(rsta), // Port A output reset (does not affect memory contents)
|
||||
.rstb(rstb), // Port B output reset (does not affect memory contents)
|
||||
.regcea(regcea), // Port A output register enable
|
||||
.regceb(regceb), // Port B output register enable
|
||||
.douta(douta), // Port A RAM output data, width determined from RAM_WIDTH
|
||||
.doutb(doutb) // Port B RAM output data, width determined from RAM_WIDTH
|
||||
);
|
||||
*/
|
||||
|
||||
|
||||
`default_nettype none
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
module uart_rx(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire rxd,
|
||||
|
||||
output logic [DATA_WIDTH - 1:0] data,
|
||||
output logic ready,
|
||||
output logic busy
|
||||
);
|
||||
|
||||
// Just going to stick to 8N1 for now, we'll come back and
|
||||
// parameterize this later.
|
||||
|
||||
parameter DATA_WIDTH = 8;
|
||||
parameter CLK_FREQ_HZ = 100_000_000;
|
||||
parameter BAUDRATE = 115200;
|
||||
|
||||
localparam PRESCALER = CLK_FREQ_HZ / BAUDRATE;
|
||||
|
||||
logic [$clog2(PRESCALER) - 1:0] baud_counter;
|
||||
logic [$clog2(DATA_WIDTH + 2):0] bit_index;
|
||||
logic [DATA_WIDTH + 2 : 0] data_buf;
|
||||
|
||||
logic prev_rxd;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
prev_rxd <= rxd;
|
||||
ready <= 0;
|
||||
baud_counter <= (baud_counter == PRESCALER - 1) ? 0 : baud_counter + 1;
|
||||
|
||||
// reset logic
|
||||
if(rst) begin
|
||||
bit_index <= 0;
|
||||
data <= 0;
|
||||
busy <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// start receiving if we see a falling edge, and not already busy
|
||||
else if (prev_rxd && ~rxd && ~busy) begin
|
||||
busy <= 1;
|
||||
data_buf <= 0;
|
||||
baud_counter <= 0;
|
||||
end
|
||||
|
||||
// if we're actually receiving
|
||||
else if (busy) begin
|
||||
if (baud_counter == PRESCALER / 2) begin
|
||||
data_buf[bit_index] <= rxd;
|
||||
bit_index <= bit_index + 1;
|
||||
|
||||
if (bit_index == DATA_WIDTH + 1) begin
|
||||
busy <= 0;
|
||||
bit_index <= 0;
|
||||
|
||||
|
||||
if (rxd && ~data_buf[0]) begin
|
||||
data <= data_buf[DATA_WIDTH : 1];
|
||||
ready <= 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
[build-system]
|
||||
requires = ["setuptools"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "manta"
|
||||
version = "0.0.0"
|
||||
authors = [
|
||||
{ name="Fischer Moseley", email="fischerm@mit.edu" },
|
||||
]
|
||||
description = "An In-Situ Debugging Tool for Programmable Hardware"
|
||||
readme = "README.md"
|
||||
dependencies = [
|
||||
'PyYAML',
|
||||
'pyserial',
|
||||
'pyvcd',
|
||||
]
|
||||
|
||||
requires-python = ">=3.7"
|
||||
classifiers = [
|
||||
"Programming Language :: Python :: 3",
|
||||
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
|
||||
"Operating System :: OS Independent",
|
||||
"Development Status :: 2 - Pre-Alpha",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://github.com/fischermoseley/manta"
|
||||
"Bug Tracker" = "https://github.com/fischermoseley/manta/issues"
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
where = ["src"]
|
||||
|
||||
[tool.setuptools.package-data]
|
||||
mypkg = ["*.sv", "*.v"]
|
||||
|
|
@ -0,0 +1,96 @@
|
|||
`default_nettype none
|
||||
|
||||
`define IDLE 0
|
||||
`define RUN 1
|
||||
|
||||
module uplink(
|
||||
input wire clk,
|
||||
input wire rst,
|
||||
input wire start,
|
||||
output wire busy,
|
||||
|
||||
/* Begin autogenerated probe definitions */
|
||||
output wire alice,
|
||||
output wire [2:0] bob,
|
||||
output wire charlotte,
|
||||
output wire [3:0] donovan
|
||||
/* End autogenerated probe definitions */
|
||||
);
|
||||
|
||||
/*
|
||||
this works in a very simple way - all it does is chill
|
||||
in the idle state, until a request to start uplinking is
|
||||
received. when that happens, it'll start dumping things
|
||||
from the port until the BRAM is empty, and then that's it.
|
||||
|
||||
this dumping happens with the trigger condition - the clock
|
||||
cycle that the triggr goes high on, we should output data.
|
||||
or have the option to, with some kind of holdoff.
|
||||
|
||||
oh wait this might be a little hard since we've got the two
|
||||
clock cycles of latency on the BRAM, so we actually need to
|
||||
preload the first two values of the bram into registers so
|
||||
when it's time to go
|
||||
|
||||
actually it's probably worth thinking more about how useful
|
||||
this would acatully be, because right now i'm not seeing too
|
||||
many situations where i'd want to use this. and we can always
|
||||
come back to it
|
||||
*/
|
||||
|
||||
parameter WIDTH = 0;
|
||||
parameter DEPTH = 0;
|
||||
localparam AW = $clog2(DEPTH);
|
||||
|
||||
logic [AW:0] read_pointer;
|
||||
logic state;
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
if(rst) begin
|
||||
state <= `IDLE
|
||||
read_pointer <= 0;
|
||||
end
|
||||
|
||||
else begin
|
||||
if(state == `IDLE) begin
|
||||
// do nothing, just wait for trigger condition
|
||||
if(start) state <= `RUN;
|
||||
end
|
||||
|
||||
if(state == `RUN) begin
|
||||
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
xilinx_true_dual_port_read_first_2_clock_ram #(
|
||||
.RAM_WIDTH(),
|
||||
.RAM_DEPTH(),
|
||||
.RAM_PERFORMANCE("HIGH PERFORMANCE")
|
||||
|
||||
) buffer (
|
||||
|
||||
// write port (currently unused)
|
||||
.clka(clk),
|
||||
.rsta(rst),
|
||||
.ena(1),
|
||||
.addra(0),
|
||||
.dina(0),
|
||||
.wea(0),
|
||||
.regcea(1),
|
||||
.douta(),
|
||||
|
||||
// read port
|
||||
.clkb(clk),
|
||||
.rstb(rst),
|
||||
.enb(1),
|
||||
.addrb(read_pointer),
|
||||
.dinb(),
|
||||
.web(0),
|
||||
.regceb(1),
|
||||
.doutb(data_out));
|
||||
|
||||
|
||||
endmodule
|
||||
|
||||
`default_nettype wire
|
||||
|
|
@ -4,6 +4,7 @@ import json
|
|||
import yaml
|
||||
from datetime import datetime
|
||||
import serial
|
||||
import pkgutil
|
||||
|
||||
|
||||
debug = True
|
||||
|
|
@ -12,26 +13,16 @@ version = "0.0.0"
|
|||
|
||||
def load_source_files(path):
|
||||
"""concatenates the contents of the list of files provided into a single string"""
|
||||
source_files = [
|
||||
f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))
|
||||
]
|
||||
source_files = [f for f in source_files if f.split(".")[-1] in ["sv", "v"]]
|
||||
|
||||
# bring manta_template.sv to the top, if it exists
|
||||
if "manta_template.sv" in source_files:
|
||||
source_files.insert(
|
||||
0, source_files.pop(source_files.index("manta_template.sv"))
|
||||
)
|
||||
downlink_template = pkgutil.get_data(__name__, "hdl/manta_template.sv")
|
||||
downlink_template += pkgutil.get_data(__name__, "hdl/fifo.sv")
|
||||
downlink_template += pkgutil.get_data(__name__, "hdl/uart_tx.sv")
|
||||
downlink_template += pkgutil.get_data(__name__, "hdl/uart_rx.sv")
|
||||
downlink_template += pkgutil.get_data(
|
||||
__name__, "hdl/xilinx_true_dual_port_read_first_2_clock_ram.v"
|
||||
)
|
||||
|
||||
buf = ""
|
||||
for source_file in source_files:
|
||||
with open(path + source_file, "r") as f:
|
||||
buf += f.read()
|
||||
|
||||
return buf
|
||||
|
||||
|
||||
downlink_template = load_source_files("src/")
|
||||
return downlink_template
|
||||
|
||||
|
||||
def load_config(path):
|
||||
Loading…
Reference in New Issue