iverilog/vvp/island_tran.cc

464 lines
14 KiB
C++

/*
* Copyright (c) 2008-2010 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "vvp_island.h"
# include "compile.h"
# include "symbols.h"
# include "schedule.h"
# include <list>
using namespace std;
class vvp_island_tran : public vvp_island {
public:
void run_island();
};
struct vvp_island_branch_tran : public vvp_island_branch {
// Behavior. (This stuff should be moved to a derived
// class. The members here are specific to the tran island
// class.)
vvp_island_branch_tran(vvp_net_t*en__, bool active_high__,
unsigned width__, unsigned part__,
unsigned offset__);
bool run_test_enabled();
void run_resolution();
void clear_resolution_flags() { flags_ &= ~0x0f; }
void mark_done(unsigned ab) { flags_ |= 1 << ab; }
bool test_done(unsigned ab) const { return flags_ & (1<<ab); }
void clear_visited(unsigned ab) { flags_ &= ~(4 << ab); }
void mark_visited(unsigned ab) { flags_ |= 4 << ab; }
bool test_visited(unsigned ab) const { return flags_ & (4<<ab); }
// Use the peek only for diagnostic purposes.
int peek_flags() const { return flags_; }
vvp_net_t*en;
unsigned width, part, offset;
bool active_high;
bool enabled_flag;
private:
int flags_;
};
vvp_island_branch_tran::vvp_island_branch_tran(vvp_net_t*en__,
bool active_high__,
unsigned width__,
unsigned part__,
unsigned offset__)
: en(en__), width(width__), part(part__), offset(offset__),
active_high(active_high__)
{
flags_ = 0;
enabled_flag = en__ ? false : true;
}
static inline vvp_island_branch_tran* BRANCH_TRAN(vvp_island_branch*tmp)
{
vvp_island_branch_tran*res = dynamic_cast<vvp_island_branch_tran*>(tmp);
assert(res);
return res;
}
/*
* The run_island() method is called by the scheduler to run the
* entire island. We run the island by calling run_resolution() for
* all the branches in the island.
*/
void vvp_island_tran::run_island()
{
// Test to see if any of the branches are enabled. This loop
// tests the enabled inputs for all the branches and caches
// the results in the enabled_flag for each branch. The
// run_test_enabled() method also clears all the processing
// flags for the branches so that we are in a good start
// state.
bool runnable = false;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
assert(tmp);
runnable |= tmp->run_test_enabled();
}
// Now resolve all the branches in the island.
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
assert(tmp);
tmp->run_resolution();
}
}
bool vvp_island_branch_tran::run_test_enabled()
{
// Clear all the flags.
clear_resolution_flags();
vvp_island_port*ep = en? dynamic_cast<vvp_island_port*> (en->fun) : 0;
// If there is no ep port (no "enabled" input) then this is a
// tran branch. Assume it is always enabled.
if (ep == 0) {
enabled_flag = true;
return true;
}
// Get the input that is driving this enable.
// SPECIAL NOTE: Try to get the input value from the
// *outvalue* of the port. If the enable is connected to a
// .port (instead of a .import) then there may be feedback
// going on, and we need to be looking at the resolved input,
// not the event input. For example:
//
// tranif1 (pin, X, pin);
//
// In this case, when we test the value for "pin", we need to
// look at the value that is resolved from this
// island. Reading the outvalue will do the trick.
//
// If the outvalue is nil, then we know that this port is a
// .import after all, so just read the invalue.
enabled_flag = false;
vvp_bit4_t enable_val;
if (ep->outvalue.size() != 0)
enable_val = ep->outvalue.value(0).value();
else if (ep->invalue.size() == 0)
enable_val = BIT4_Z;
else
enable_val = ep->invalue.value(0).value();
if (active_high==true && enable_val != BIT4_1)
return false;
if (active_high==false && enable_val != BIT4_0)
return false;
enabled_flag = true;
return true;
}
static void island_send_value(list<vvp_branch_ptr_t>&connections, const vvp_vector8_t&val)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
island_send_value(tmp_ab? tmp_ptr->b : tmp_ptr->a, val);
}
}
static void mark_done_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_island_branch*tmp_ptr = idx->ptr();
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
unsigned tmp_ab = idx->port();
cur->mark_done(tmp_ab);
}
}
static void mark_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_island_branch*tmp_ptr = idx->ptr();
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
assert(cur);
unsigned tmp_ab = idx->port();
cur->mark_visited(tmp_ab);
}
}
static void clear_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
unsigned tmp_ab = idx->port();
tmp_ptr->clear_visited(tmp_ab);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur);
static void resolve_values_from_connections(vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_vector8_t tmp = get_value_from_branch(*idx);
if (val.size() == 0)
val = tmp;
else if (tmp.size() != 0)
val = resolve(val, tmp);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur)
{
vvp_island_branch_tran*ptr = BRANCH_TRAN(cur.ptr());
assert(ptr);
unsigned ab = cur.port();
unsigned ab_other = ab^1;
// If the branch link is disabled, return nil.
if (ptr->enabled_flag == false)
return vvp_vector8_t();
vvp_branch_ptr_t other (ptr, ab_other);
// If the branch other side is already visited, return
// nil. This prevents recursion loops.
if (ptr->test_visited(ab_other))
return vvp_vector8_t();
// Other side net, and port value.
vvp_net_t*net_other = ab? ptr->a : ptr->b;
vvp_vector8_t val_other = island_get_value(net_other);
// recurse
list<vvp_branch_ptr_t> connections;
island_collect_node(connections, other);
mark_visited_flags(connections);
resolve_values_from_connections(val_other, connections);
// Remove/unwind visited flags
clear_visited_flags(connections);
if (val_other.size() == 0)
return val_other;
if (ptr->width) {
if (ab == 0) {
val_other = part_expand(val_other, ptr->width, ptr->offset);
} else {
val_other = val_other.subvalue(ptr->offset, ptr->part);
}
}
return val_other;
}
/*
* Try to recursively push a fully resolved value back through the
* graph. This can save many span iterations through the graph by
* marking as done that are obviously and easily done. But it is
* better to be conservative here.
*
* The connections list is filled with connections that are already
* marked done, and the val is the resolved value. We are going to try
* to follow branches to see if we can push the value further and mark
* the other side done as well.
*/
static void push_value_through_branches(const vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; ++ idx ) {
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
unsigned tmp_ab = idx->port();
unsigned other_ab = tmp_ab^1;
// If other side already done, skip
if (tmp_ptr->test_done(other_ab))
continue;
// If link is not enabled, skip.
if (! tmp_ptr->enabled_flag)
continue;
vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a;
if (tmp_ptr->width == 0) {
// There are no part selects, so we can safely
// Mark this end as done.
tmp_ptr->mark_done(other_ab);
island_send_value(other_net, val);
} else if (other_ab == 1) {
// The other side is a strict subset (part select)
// of this side, so we can mark this end as done.
tmp_ptr->mark_done(other_ab);
vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part);
island_send_value(other_net, tmp);
} else {
// Otherwise, the other side is not fully
// specified (is a subset of the done side) so we
// can't take this shortcut.
}
}
}
/*
* This method resolves the value for a branch recursively. It uses
* recursive descent to span the graph of branches, collecting values
* that need to be resolved together.
*/
void vvp_island_branch_tran::run_resolution()
{
// Collect all the branch endpoints that are joined to my A
// side.
list<vvp_branch_ptr_t> connections;
bool processed_a_side = false;
vvp_vector8_t val;
// The "flags" member is a bitmask that marks whether an
// endpoint of a branch has been visited. If flags&1, then the
// A side has been visited. If flags&2, then the B side has
// been visited. The flags help us avoid recursion when doing
// spanning trees.
// If the A side has already been completed, then skip it.
if (! test_done(0)) {
processed_a_side = true;
vvp_branch_ptr_t a_side(this, 0);
island_collect_node(connections, a_side);
// Mark my A side as done. Do this early to prevent recursing
// back. All the connections that share this port are also
// done. Make sure their flags are set appropriately.
mark_done_flags(connections);
// Start with my branch-point value.
val = island_get_value(a);
mark_visited_flags(connections); // Mark as visited.
// Now scan the other sides of all the branches connected to
// my A side. The get_value_from_branch() will recurse as
// necessary to depth-first walk the graph.
resolve_values_from_connections(val, connections);
// A side is done.
island_send_value(connections, val);
// Clear the visited flags. This must be done so that other
// branches can read this input value.
clear_visited_flags(connections);
// Try to push the calculated value out through the
// branches. This is useful for A-side results because
// there is a high probability that the other side of
// all the connected branches is fully specified by this
// result.
push_value_through_branches(val, connections);
}
// If the B side got taken care of by above, then this branch
// is done. Stop now.
if (test_done(1))
return;
// Repeat the above for the B side.
connections.clear();
island_collect_node(connections, vvp_branch_ptr_t(this, 1));
mark_done_flags(connections);
if (enabled_flag && processed_a_side) {
// If this is a connected branch, then we know from the
// start that we have all the bits needed to complete
// the B side. Even if the B side is a part select, the
// simple part select must be correct because the
// recursive resolve_values_from_connections above must
// of cycled back to the B side of myself when resolving
// the connections.
if (width != 0)
val = val.subvalue(offset, part);
} else {
// If this branch is not enabled, then the B-side must
// be processed on its own.
val = island_get_value(b);
mark_visited_flags(connections);
resolve_values_from_connections(val, connections);
clear_visited_flags(connections);
}
island_send_value(connections, val);
}
void compile_island_tran(char*label)
{
vvp_island*use_island = new vvp_island_tran;
compile_island_base(label, use_island);
}
void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe)
{
vvp_island*use_island = compile_find_island(island);
assert(use_island);
free(island);
vvp_net_t*en = NULL;
if (pe) {
en = use_island->find_port(pe);
assert(en);
free(pe);
}
vvp_island_branch_tran*br = new vvp_island_branch_tran(en,
sense ? true :
false,
0, 0, 0);
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_tranvp(char*island, char*pa, char*pb,
unsigned wid, unsigned par, unsigned off)
{
vvp_island*use_island = compile_find_island(island);
assert(use_island);
free(island);
vvp_island_branch_tran*br = new vvp_island_branch_tran(NULL, false,
wid, par, off) ;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}