/* * Copyright (c) 2008-2010 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "vvp_island.h" # include "compile.h" # include "symbols.h" # include "schedule.h" # include using namespace std; class vvp_island_tran : public vvp_island { public: void run_island(); }; struct vvp_island_branch_tran : public vvp_island_branch { // Behavior. (This stuff should be moved to a derived // class. The members here are specific to the tran island // class.) vvp_island_branch_tran(vvp_net_t*en__, bool active_high__, unsigned width__, unsigned part__, unsigned offset__); bool run_test_enabled(); void run_resolution(); void clear_resolution_flags() { flags_ &= ~0x0f; } void mark_done(unsigned ab) { flags_ |= 1 << ab; } bool test_done(unsigned ab) const { return flags_ & (1<(tmp); assert(res); return res; } /* * The run_island() method is called by the scheduler to run the * entire island. We run the island by calling run_resolution() for * all the branches in the island. */ void vvp_island_tran::run_island() { // Test to see if any of the branches are enabled. This loop // tests the enabled inputs for all the branches and caches // the results in the enabled_flag for each branch. The // run_test_enabled() method also clears all the processing // flags for the branches so that we are in a good start // state. bool runnable = false; for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) { vvp_island_branch_tran*tmp = dynamic_cast(cur); assert(tmp); runnable |= tmp->run_test_enabled(); } // Now resolve all the branches in the island. for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) { vvp_island_branch_tran*tmp = dynamic_cast(cur); assert(tmp); tmp->run_resolution(); } } bool vvp_island_branch_tran::run_test_enabled() { // Clear all the flags. clear_resolution_flags(); vvp_island_port*ep = en? dynamic_cast (en->fun) : 0; // If there is no ep port (no "enabled" input) then this is a // tran branch. Assume it is always enabled. if (ep == 0) { enabled_flag = true; return true; } // Get the input that is driving this enable. // SPECIAL NOTE: Try to get the input value from the // *outvalue* of the port. If the enable is connected to a // .port (instead of a .import) then there may be feedback // going on, and we need to be looking at the resolved input, // not the event input. For example: // // tranif1 (pin, X, pin); // // In this case, when we test the value for "pin", we need to // look at the value that is resolved from this // island. Reading the outvalue will do the trick. // // If the outvalue is nil, then we know that this port is a // .import after all, so just read the invalue. enabled_flag = false; vvp_bit4_t enable_val; if (ep->outvalue.size() != 0) enable_val = ep->outvalue.value(0).value(); else if (ep->invalue.size() == 0) enable_val = BIT4_Z; else enable_val = ep->invalue.value(0).value(); if (active_high==true && enable_val != BIT4_1) return false; if (active_high==false && enable_val != BIT4_0) return false; enabled_flag = true; return true; } static void island_send_value(list&connections, const vvp_vector8_t&val) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_island_branch*tmp_ptr = idx->ptr(); unsigned tmp_ab = idx->port(); island_send_value(tmp_ab? tmp_ptr->b : tmp_ptr->a, val); } } static void mark_done_flags(list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_island_branch*tmp_ptr = idx->ptr(); vvp_island_branch_tran*cur = dynamic_cast(tmp_ptr); unsigned tmp_ab = idx->port(); cur->mark_done(tmp_ab); } } static void mark_visited_flags(list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_island_branch*tmp_ptr = idx->ptr(); vvp_island_branch_tran*cur = dynamic_cast(tmp_ptr); assert(cur); unsigned tmp_ab = idx->port(); cur->mark_visited(tmp_ab); } } static void clear_visited_flags(list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr()); unsigned tmp_ab = idx->port(); tmp_ptr->clear_visited(tmp_ab); } } static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur); static void resolve_values_from_connections(vvp_vector8_t&val, list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_vector8_t tmp = get_value_from_branch(*idx); if (val.size() == 0) val = tmp; else if (tmp.size() != 0) val = resolve(val, tmp); } } static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur) { vvp_island_branch_tran*ptr = BRANCH_TRAN(cur.ptr()); assert(ptr); unsigned ab = cur.port(); unsigned ab_other = ab^1; // If the branch link is disabled, return nil. if (ptr->enabled_flag == false) return vvp_vector8_t(); vvp_branch_ptr_t other (ptr, ab_other); // If the branch other side is already visited, return // nil. This prevents recursion loops. if (ptr->test_visited(ab_other)) return vvp_vector8_t(); // Other side net, and port value. vvp_net_t*net_other = ab? ptr->a : ptr->b; vvp_vector8_t val_other = island_get_value(net_other); // recurse list connections; island_collect_node(connections, other); mark_visited_flags(connections); resolve_values_from_connections(val_other, connections); // Remove/unwind visited flags clear_visited_flags(connections); if (val_other.size() == 0) return val_other; if (ptr->width) { if (ab == 0) { val_other = part_expand(val_other, ptr->width, ptr->offset); } else { val_other = val_other.subvalue(ptr->offset, ptr->part); } } return val_other; } /* * Try to recursively push a fully resolved value back through the * graph. This can save many span iterations through the graph by * marking as done that are obviously and easily done. But it is * better to be conservative here. * * The connections list is filled with connections that are already * marked done, and the val is the resolved value. We are going to try * to follow branches to see if we can push the value further and mark * the other side done as well. */ static void push_value_through_branches(const vvp_vector8_t&val, list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr()); unsigned tmp_ab = idx->port(); unsigned other_ab = tmp_ab^1; // If other side already done, skip if (tmp_ptr->test_done(other_ab)) continue; // If link is not enabled, skip. if (! tmp_ptr->enabled_flag) continue; vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a; if (tmp_ptr->width == 0) { // There are no part selects, so we can safely // Mark this end as done. tmp_ptr->mark_done(other_ab); island_send_value(other_net, val); } else if (other_ab == 1) { // The other side is a strict subset (part select) // of this side, so we can mark this end as done. tmp_ptr->mark_done(other_ab); vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part); island_send_value(other_net, tmp); } else { // Otherwise, the other side is not fully // specified (is a subset of the done side) so we // can't take this shortcut. } } } /* * This method resolves the value for a branch recursively. It uses * recursive descent to span the graph of branches, collecting values * that need to be resolved together. */ void vvp_island_branch_tran::run_resolution() { // Collect all the branch endpoints that are joined to my A // side. list connections; bool processed_a_side = false; vvp_vector8_t val; // The "flags" member is a bitmask that marks whether an // endpoint of a branch has been visited. If flags&1, then the // A side has been visited. If flags&2, then the B side has // been visited. The flags help us avoid recursion when doing // spanning trees. // If the A side has already been completed, then skip it. if (! test_done(0)) { processed_a_side = true; vvp_branch_ptr_t a_side(this, 0); island_collect_node(connections, a_side); // Mark my A side as done. Do this early to prevent recursing // back. All the connections that share this port are also // done. Make sure their flags are set appropriately. mark_done_flags(connections); // Start with my branch-point value. val = island_get_value(a); mark_visited_flags(connections); // Mark as visited. // Now scan the other sides of all the branches connected to // my A side. The get_value_from_branch() will recurse as // necessary to depth-first walk the graph. resolve_values_from_connections(val, connections); // A side is done. island_send_value(connections, val); // Clear the visited flags. This must be done so that other // branches can read this input value. clear_visited_flags(connections); // Try to push the calculated value out through the // branches. This is useful for A-side results because // there is a high probability that the other side of // all the connected branches is fully specified by this // result. push_value_through_branches(val, connections); } // If the B side got taken care of by above, then this branch // is done. Stop now. if (test_done(1)) return; // Repeat the above for the B side. connections.clear(); island_collect_node(connections, vvp_branch_ptr_t(this, 1)); mark_done_flags(connections); if (enabled_flag && processed_a_side) { // If this is a connected branch, then we know from the // start that we have all the bits needed to complete // the B side. Even if the B side is a part select, the // simple part select must be correct because the // recursive resolve_values_from_connections above must // of cycled back to the B side of myself when resolving // the connections. if (width != 0) val = val.subvalue(offset, part); } else { // If this branch is not enabled, then the B-side must // be processed on its own. val = island_get_value(b); mark_visited_flags(connections); resolve_values_from_connections(val, connections); clear_visited_flags(connections); } island_send_value(connections, val); } void compile_island_tran(char*label) { vvp_island*use_island = new vvp_island_tran; compile_island_base(label, use_island); } void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe) { vvp_island*use_island = compile_find_island(island); assert(use_island); free(island); vvp_net_t*en = NULL; if (pe) { en = use_island->find_port(pe); assert(en); free(pe); } vvp_island_branch_tran*br = new vvp_island_branch_tran(en, sense ? true : false, 0, 0, 0); use_island->add_branch(br, pa, pb); free(pa); free(pb); } void compile_island_tranvp(char*island, char*pa, char*pb, unsigned wid, unsigned par, unsigned off) { vvp_island*use_island = compile_find_island(island); assert(use_island); free(island); vvp_island_branch_tran*br = new vvp_island_branch_tran(NULL, false, wid, par, off) ; use_island->add_branch(br, pa, pb); free(pa); free(pb); }