iverilog/vhdlpp/expression_elaborate.cc

454 lines
12 KiB
C++

/*
* Copyright (c) 2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
* Picture Elements, Inc., 777 Panoramic Way, Berkeley, CA 94704.
*/
# include "expression.h"
# include "architec.h"
# include "entity.h"
# include "vsignal.h"
# include <iostream>
# include <typeinfo>
# include "ivl_assert.h"
using namespace std;
int Expression::elaborate_lval(Entity*, Architecture*, bool)
{
cerr << get_fileline() << ": error: Expression is not a valid l-value." << endl;
return 1;
}
const VType* Expression::probe_type(Entity*, Architecture*) const
{
return 0;
}
int ExpName::elaborate_lval(Entity*ent, Architecture*arc, bool is_sequ)
{
int errors = 0;
const VType*found_type = 0;
if (const InterfacePort*cur = ent->find_port(name_)) {
if (cur->mode != PORT_OUT) {
cerr << get_fileline() << ": error: Assignment to "
"input port " << name_ << "." << endl;
return errors += 1;
}
if (is_sequ)
ent->set_declaration_l_value(name_, is_sequ);
found_type = cur->type;
} else if (ent->find_generic(name_)) {
cerr << get_fileline() << ": error: Assignment to generic "
<< name_ << " from entity "
<< ent->get_name() << "." << endl;
return 1;
} else if (Signal*sig = arc->find_signal(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) sig->count_ref_sequ();
found_type = sig->peek_type();
} else if (Variable*var = arc->find_variable(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) var->count_ref_sequ();
found_type = var->peek_type();
}
if (found_type == 0) {
cerr << get_fileline() << ": error: Signal/variable " << name_
<< " not found in this context." << endl;
return errors + 1;
}
if (const VTypeArray*array = dynamic_cast<const VTypeArray*>(found_type)) {
if (index_ && !lsb_) {
// If the name is an array or a vector, then an
// indexed name has the type of the element.
found_type = array->element_type();
} else if (index_ && lsb_) {
// If the name is an array, then a part select is
// also an array, but with different bounds.
int64_t use_msb, use_lsb;
bool flag;
flag = index_->evaluate(arc, use_msb);
ivl_assert(*this, flag);
flag = lsb_->evaluate(arc, use_lsb);
ivl_assert(*this, flag);
Expression*exp_msb = new ExpInteger(use_msb);
Expression*exp_lsb = new ExpInteger(use_lsb);
vector<VTypeArray::range_t> use_dims (1);
use_dims[0] = VTypeArray::range_t(exp_msb, exp_lsb);
found_type = new VTypeArray(array->element_type(), use_dims);
}
}
set_type(found_type);
return errors;
}
int ExpName::elaborate_rval(Entity*ent, Architecture*arc, const InterfacePort*lval)
{
int errors = 0;
if (const InterfacePort*cur = ent->find_port(name_)) {
/* IEEE 1076-2008, p.80:
* For a formal port IN, associated port should be IN, OUT, INOUT or BUFFER
* For a formal port OUT, associated port should be OUT, INOUT or BUFFER
* For a formal port INOUT, associated prot should be OUT, INOUT or BUFFER
* For a formal port BUFFER, associated port should be OUT, INOUT or BUFFER
*/
switch(lval->mode) {
case PORT_OUT:
//case PORT_INOUT:
if (cur->mode == PORT_IN) {
cerr << get_fileline() << ": error: Connecting "
"formal output port " << lval->name << " to actual input port "
<< name_ << "." << endl;
errors += 1;
}
break;
case PORT_IN:
case PORT_NONE:
default:
break;
}
} else if (arc->find_signal(name_)) {
/* OK */
} else if (ent->find_generic(name_)) {
/* OK */
} else {
cerr << get_fileline() << ": error: No port or signal " << name_
<< " to be used as r-value." << endl;
errors += 1;
}
return errors;
}
int ExpNameALL::elaborate_lval(Entity*ent, Architecture*arc, bool is_sequ)
{
return Expression::elaborate_lval(ent, arc, is_sequ);
}
int Expression::elaborate_expr(Entity*, Architecture*, const VType*)
{
cerr << get_fileline() << ": internal error: I don't know how to elaborate expression type=" << typeid(*this).name() << endl;
return 1;
}
const VType* ExpBinary::probe_type(Entity*ent, Architecture*arc) const
{
const VType*t1 = operand1_->probe_type(ent, arc);
const VType*t2 = operand2_->probe_type(ent, arc);
if (t1 == 0)
return t2;
if (t2 == 0)
return t1;
if (t1 == t2)
return t1;
cerr << get_fileline() << ": internal error: I don't know how to resolve types of generic binary expressions." << endl;
return 0;
}
int ExpBinary::elaborate_exprs(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
errors += operand1_->elaborate_expr(ent, arc, ltype);
errors += operand2_->elaborate_expr(ent, arc, ltype);
return errors;
}
int ExpAggregate::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
if (ltype == 0) {
cerr << get_fileline() << ": error: Elaboration of aggregate types needs wel known type context?" << endl;
return 1;
}
set_type(ltype);
if (const VTypeArray*larray = dynamic_cast<const VTypeArray*>(ltype)) {
return elaborate_expr_array_(ent, arc, larray);
}
cerr << get_fileline() << ": internal error: I don't know how to elaborate aggregate expressions. type=" << typeid(*ltype).name() << endl;
return 1;
}
/*
* Elaboration of array aggregates is elaboration of the element
* expressions using the element type as the ltype for the
* subexpression.
*/
int ExpAggregate::elaborate_expr_array_(Entity*ent, Architecture*arc, const VTypeArray*ltype)
{
const VType*element_type = ltype->element_type();
int errors = 0;
size_t choice_count = 0;
for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) {
element_t*ecur = elements_[edx];
choice_count += ecur->count_choices();
}
aggregate_.resize(choice_count);
size_t cdx = 0;
for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) {
element_t*ecur = elements_[edx];
ecur->map_choices(&aggregate_[cdx]);
cdx += ecur->count_choices();
}
ivl_assert(*this, cdx == choice_count);
for (size_t idx = 0 ; idx < aggregate_.size() ; idx += 1) {
if (aggregate_[idx].alias_flag)
continue;
errors += aggregate_[idx].expr->elaborate_expr(ent, arc, element_type);
}
elements_.clear();
return errors;
}
void ExpAggregate::element_t::map_choices(ExpAggregate::choice_element*dst)
{
for (size_t idx = 0 ; idx < fields_.size() ; idx += 1) {
dst->choice = fields_[idx];
dst->expr = val_;
dst->alias_flag = (idx != 0);
dst += 1;
}
}
int ExpArithmetic::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, arc);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, arc, ltype);
return errors;
}
const VType* ExpAttribute::probe_type(Entity*ent, Architecture*arc) const
{
base_->probe_type(ent, arc);
if (name_ == "length") {
return primitive_INTEGER;
}
return 0;
}
int ExpAttribute::elaborate_expr(Entity*ent, Architecture*arc, const VType*)
{
int errors = 0;
const VType*sub_type = base_->probe_type(ent, arc);
errors += base_->elaborate_expr(ent, arc, sub_type);
return errors;
}
int ExpBitstring::elaborate_expr(Entity*, Architecture*, const VType*)
{
int errors = 0;
return errors;
}
int ExpCharacter::elaborate_expr(Entity*, Architecture*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}
const VType* ExpConditional::probe_type(Entity*, Architecture*) const
{
return 0;
}
int ExpConditional::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
if (ltype == 0)
ltype = probe_type(ent, arc);
ivl_assert(*this, ltype);
set_type(ltype);
/* Note that the type for the condition expression need not
have anything to do with the type of this expression. */
errors += cond_->elaborate_expr(ent, arc, 0);
for (list<Expression*>::const_iterator cur = true_clause_.begin()
; cur != true_clause_.end() ; ++cur) {
errors += (*cur)->elaborate_expr(ent, arc, ltype);
}
for (list<Expression*>::const_iterator cur = else_clause_.begin()
; cur != else_clause_.end() ; ++cur) {
errors += (*cur)->elaborate_expr(ent, arc, ltype);
}
return errors;
}
int ExpFunc::elaborate_expr(Entity*ent, Architecture*arc, const VType*)
{
int errors = 0;
for (size_t idx = 0 ; idx < argv_.size() ; idx += 1) {
const VType*tmp = argv_[idx]->probe_type(ent, arc);
errors += argv_[idx]->elaborate_expr(ent, arc, tmp);
}
return errors;
}
const VType* ExpInteger::probe_type(Entity*, Architecture*) const
{
return primitive_INTEGER;
}
int ExpInteger::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, arc);
}
ivl_assert(*this, ltype != 0);
return errors;
}
int ExpLogical::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, arc);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, arc, ltype);
return errors;
}
const VType* ExpName::probe_type(Entity*ent, Architecture*arc) const
{
if (const InterfacePort*cur = ent->find_port(name_)) {
ivl_assert(*this, cur->type);
return cur->type;
}
if (const InterfacePort*cur = ent->find_generic(name_)) {
ivl_assert(*this, cur->type);
return cur->type;
}
if (Signal*sig = arc->find_signal(name_))
return sig->peek_type();
if (Variable*var = arc->find_variable(name_))
return var->peek_type();
const VType*ctype = 0;
Expression*cval = 0;
if (arc->find_constant(name_, ctype, cval))
return ctype;
cerr << get_fileline() << ": error: Signal/variable " << name_
<< " not found in this context." << endl;
return 0;
}
int ExpName::elaborate_expr(Entity*, Architecture*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}
const VType* ExpNameALL::probe_type(Entity*, Architecture*) const
{
return 0;
}
const VType* ExpRelation::probe_type(Entity*ent, Architecture*arc) const
{
const VType*type1 = peek_operand1()->probe_type(ent, arc);
const VType*type2 = peek_operand2()->probe_type(ent, arc);
return primitive_BOOLEAN;
}
int ExpRelation::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, arc);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, arc, ltype);
return errors;
}
int ExpString::elaborate_expr(Entity*, Architecture*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}
int ExpUNot::elaborate_expr(Entity*, Architecture*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}