/* * Copyright (c) 2011 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * Picture Elements, Inc., 777 Panoramic Way, Berkeley, CA 94704. */ # include "expression.h" # include "architec.h" # include "entity.h" # include "vsignal.h" # include # include # include "ivl_assert.h" using namespace std; int Expression::elaborate_lval(Entity*, Architecture*, bool) { cerr << get_fileline() << ": error: Expression is not a valid l-value." << endl; return 1; } const VType* Expression::probe_type(Entity*, Architecture*) const { return 0; } int ExpName::elaborate_lval(Entity*ent, Architecture*arc, bool is_sequ) { int errors = 0; const VType*found_type = 0; if (const InterfacePort*cur = ent->find_port(name_)) { if (cur->mode != PORT_OUT) { cerr << get_fileline() << ": error: Assignment to " "input port " << name_ << "." << endl; return errors += 1; } if (is_sequ) ent->set_declaration_l_value(name_, is_sequ); found_type = cur->type; } else if (ent->find_generic(name_)) { cerr << get_fileline() << ": error: Assignment to generic " << name_ << " from entity " << ent->get_name() << "." << endl; return 1; } else if (Signal*sig = arc->find_signal(name_)) { // Tell the target signal that this may be a sequential l-value. if (is_sequ) sig->count_ref_sequ(); found_type = sig->peek_type(); } else if (Variable*var = arc->find_variable(name_)) { // Tell the target signal that this may be a sequential l-value. if (is_sequ) var->count_ref_sequ(); found_type = var->peek_type(); } if (found_type == 0) { cerr << get_fileline() << ": error: Signal/variable " << name_ << " not found in this context." << endl; return errors + 1; } if (const VTypeArray*array = dynamic_cast(found_type)) { if (index_ && !lsb_) { // If the name is an array or a vector, then an // indexed name has the type of the element. found_type = array->element_type(); } else if (index_ && lsb_) { // If the name is an array, then a part select is // also an array, but with different bounds. int64_t use_msb, use_lsb; bool flag; flag = index_->evaluate(arc, use_msb); ivl_assert(*this, flag); flag = lsb_->evaluate(arc, use_lsb); ivl_assert(*this, flag); Expression*exp_msb = new ExpInteger(use_msb); Expression*exp_lsb = new ExpInteger(use_lsb); vector use_dims (1); use_dims[0] = VTypeArray::range_t(exp_msb, exp_lsb); found_type = new VTypeArray(array->element_type(), use_dims); } } set_type(found_type); return errors; } int ExpName::elaborate_rval(Entity*ent, Architecture*arc, const InterfacePort*lval) { int errors = 0; if (const InterfacePort*cur = ent->find_port(name_)) { /* IEEE 1076-2008, p.80: * For a formal port IN, associated port should be IN, OUT, INOUT or BUFFER * For a formal port OUT, associated port should be OUT, INOUT or BUFFER * For a formal port INOUT, associated prot should be OUT, INOUT or BUFFER * For a formal port BUFFER, associated port should be OUT, INOUT or BUFFER */ switch(lval->mode) { case PORT_OUT: //case PORT_INOUT: if (cur->mode == PORT_IN) { cerr << get_fileline() << ": error: Connecting " "formal output port " << lval->name << " to actual input port " << name_ << "." << endl; errors += 1; } break; case PORT_IN: case PORT_NONE: default: break; } } else if (arc->find_signal(name_)) { /* OK */ } else if (ent->find_generic(name_)) { /* OK */ } else { cerr << get_fileline() << ": error: No port or signal " << name_ << " to be used as r-value." << endl; errors += 1; } return errors; } int ExpNameALL::elaborate_lval(Entity*ent, Architecture*arc, bool is_sequ) { return Expression::elaborate_lval(ent, arc, is_sequ); } int Expression::elaborate_expr(Entity*, Architecture*, const VType*) { cerr << get_fileline() << ": internal error: I don't know how to elaborate expression type=" << typeid(*this).name() << endl; return 1; } const VType* ExpBinary::probe_type(Entity*ent, Architecture*arc) const { const VType*t1 = operand1_->probe_type(ent, arc); const VType*t2 = operand2_->probe_type(ent, arc); if (t1 == 0) return t2; if (t2 == 0) return t1; if (t1 == t2) return t1; cerr << get_fileline() << ": internal error: I don't know how to resolve types of generic binary expressions." << endl; return 0; } int ExpBinary::elaborate_exprs(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; errors += operand1_->elaborate_expr(ent, arc, ltype); errors += operand2_->elaborate_expr(ent, arc, ltype); return errors; } int ExpAggregate::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { if (ltype == 0) { cerr << get_fileline() << ": error: Elaboration of aggregate types needs wel known type context?" << endl; return 1; } set_type(ltype); if (const VTypeArray*larray = dynamic_cast(ltype)) { return elaborate_expr_array_(ent, arc, larray); } cerr << get_fileline() << ": internal error: I don't know how to elaborate aggregate expressions. type=" << typeid(*ltype).name() << endl; return 1; } /* * Elaboration of array aggregates is elaboration of the element * expressions using the element type as the ltype for the * subexpression. */ int ExpAggregate::elaborate_expr_array_(Entity*ent, Architecture*arc, const VTypeArray*ltype) { const VType*element_type = ltype->element_type(); int errors = 0; size_t choice_count = 0; for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) { element_t*ecur = elements_[edx]; choice_count += ecur->count_choices(); } aggregate_.resize(choice_count); size_t cdx = 0; for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) { element_t*ecur = elements_[edx]; ecur->map_choices(&aggregate_[cdx]); cdx += ecur->count_choices(); } ivl_assert(*this, cdx == choice_count); for (size_t idx = 0 ; idx < aggregate_.size() ; idx += 1) { if (aggregate_[idx].alias_flag) continue; errors += aggregate_[idx].expr->elaborate_expr(ent, arc, element_type); } elements_.clear(); return errors; } void ExpAggregate::element_t::map_choices(ExpAggregate::choice_element*dst) { for (size_t idx = 0 ; idx < fields_.size() ; idx += 1) { dst->choice = fields_[idx]; dst->expr = val_; dst->alias_flag = (idx != 0); dst += 1; } } int ExpArithmetic::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; if (ltype == 0) { ltype = probe_type(ent, arc); } ivl_assert(*this, ltype != 0); errors += elaborate_exprs(ent, arc, ltype); return errors; } const VType* ExpAttribute::probe_type(Entity*ent, Architecture*arc) const { base_->probe_type(ent, arc); if (name_ == "length") { return primitive_INTEGER; } return 0; } int ExpAttribute::elaborate_expr(Entity*ent, Architecture*arc, const VType*) { int errors = 0; const VType*sub_type = base_->probe_type(ent, arc); errors += base_->elaborate_expr(ent, arc, sub_type); return errors; } int ExpBitstring::elaborate_expr(Entity*, Architecture*, const VType*) { int errors = 0; return errors; } int ExpCharacter::elaborate_expr(Entity*, Architecture*, const VType*ltype) { ivl_assert(*this, ltype != 0); set_type(ltype); return 0; } const VType* ExpConditional::probe_type(Entity*, Architecture*) const { return 0; } int ExpConditional::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; if (ltype == 0) ltype = probe_type(ent, arc); ivl_assert(*this, ltype); set_type(ltype); /* Note that the type for the condition expression need not have anything to do with the type of this expression. */ errors += cond_->elaborate_expr(ent, arc, 0); for (list::const_iterator cur = true_clause_.begin() ; cur != true_clause_.end() ; ++cur) { errors += (*cur)->elaborate_expr(ent, arc, ltype); } for (list::const_iterator cur = else_clause_.begin() ; cur != else_clause_.end() ; ++cur) { errors += (*cur)->elaborate_expr(ent, arc, ltype); } return errors; } int ExpFunc::elaborate_expr(Entity*ent, Architecture*arc, const VType*) { int errors = 0; for (size_t idx = 0 ; idx < argv_.size() ; idx += 1) { const VType*tmp = argv_[idx]->probe_type(ent, arc); errors += argv_[idx]->elaborate_expr(ent, arc, tmp); } return errors; } const VType* ExpInteger::probe_type(Entity*, Architecture*) const { return primitive_INTEGER; } int ExpInteger::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; if (ltype == 0) { ltype = probe_type(ent, arc); } ivl_assert(*this, ltype != 0); return errors; } int ExpLogical::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; if (ltype == 0) { ltype = probe_type(ent, arc); } ivl_assert(*this, ltype != 0); errors += elaborate_exprs(ent, arc, ltype); return errors; } const VType* ExpName::probe_type(Entity*ent, Architecture*arc) const { if (const InterfacePort*cur = ent->find_port(name_)) { ivl_assert(*this, cur->type); return cur->type; } if (const InterfacePort*cur = ent->find_generic(name_)) { ivl_assert(*this, cur->type); return cur->type; } if (Signal*sig = arc->find_signal(name_)) return sig->peek_type(); if (Variable*var = arc->find_variable(name_)) return var->peek_type(); const VType*ctype = 0; Expression*cval = 0; if (arc->find_constant(name_, ctype, cval)) return ctype; cerr << get_fileline() << ": error: Signal/variable " << name_ << " not found in this context." << endl; return 0; } int ExpName::elaborate_expr(Entity*, Architecture*, const VType*ltype) { ivl_assert(*this, ltype != 0); set_type(ltype); return 0; } const VType* ExpNameALL::probe_type(Entity*, Architecture*) const { return 0; } const VType* ExpRelation::probe_type(Entity*ent, Architecture*arc) const { const VType*type1 = peek_operand1()->probe_type(ent, arc); const VType*type2 = peek_operand2()->probe_type(ent, arc); return primitive_BOOLEAN; } int ExpRelation::elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype) { int errors = 0; if (ltype == 0) { ltype = probe_type(ent, arc); } ivl_assert(*this, ltype != 0); errors += elaborate_exprs(ent, arc, ltype); return errors; } int ExpString::elaborate_expr(Entity*, Architecture*, const VType*ltype) { ivl_assert(*this, ltype != 0); set_type(ltype); return 0; } int ExpUNot::elaborate_expr(Entity*, Architecture*, const VType*ltype) { ivl_assert(*this, ltype != 0); set_type(ltype); return 0; }