Like this:
... if (ce0) foo <= foo_in;
... if (ce1) bar <= bar_in;
Note that this is within a block, and represents multiple FF nodes
with different clock enables.
When for example assigning to foo[<x>] within a contitional, and
doing synthesis, we need to create a NetSubstitute device to manage
the l-value bit selects.
This generates an EQZ LPM device that carries the case-z-ness to
the code generator.
Also add to the vvp code generator support for the EQZ device so
that the synthesis results can be simulated.
Account for the wildcard devices in the sizer.
When conditional ports are blending (by allowing NetPartSelects be
connected together to the outputs) make sure there isn't an accidental
overlap of drivers that invalidates the process.
In a design, there may be lingering NexusSet objects, or the
nodangle may itself use NexusSet objects. This creates links,
and this should not confuse the functor.
While we are at it, clean up some handling of events structures.
This required keeping for-loops as actual things through the
netlist form so that the synthesizer can get at and understand
the parts of the for-loop. This may improve vvp code generation
in the future, but for now continue to present to the vvp code
generation the block-while form.
If statements within blocks can confuse the synthesizer when there
are outputs that are assigned ahead of the if statement. This patch
handles that case.
If the l-value is an unresolved wire, then elaboration can allow
the assignment as long as it is to bits that are not otherwise
driven. Handle this in some simple cases.
When a module is instantiated multiple times, the enum
types contained within would cause trouble. This fixes
that by elaborating in proper scope context.
This patchs adds support for the $dimensions() and $unpacked_dimensions()
array functions. Since the argument is only used to get the type information
these functions can always be evaluated at compile time.
For the following functions if the dimension argument is constant or omitted
and the first argument is not dynamic (a string or dynamic array) they will
return the specified information.
$left(), $right(), $high(), $low(), $increment() and $size()
Dynamic information and a variable second argument will be implement in a
future patch.
This allows for syntax like a.b.c where a is a class with member
b, which is a class with member c, and so on. The handling is mostly
for the support of compound objects like classes.
This gets nested l-values to (but just short of) the ivl_target API.
Now the elaborator can process nested l-values, but I haven't figured
out how to present that at the ivl_target.h API.
Add support for case, forever, and repeat statements in constant
functions. Also fix a bug in the constant function implementation
of NetESelect when used for zero/sign extension.
This patch implements the evaluate_function method for the NetDisable
and NetSTask classes. It also makes the checks for a function being
constant work when the function contains nested scopes (named blocks).
This patch adds support for implicit casts to the elaborate_rval_expr()
function. This will handle the majority of cases where an implicit cast
can occur.
This patch implements the evaluate_function method for the NetEBBits,
NetEBDiv, NetEBLogic, NetEBMinMax, and NetEBPow classes. It also
factors out some common code into the NetEBinary class.
If a signal s driven by multiple non-overlapping NetPartSelect(PV)
objects, then combine them into a single NetConcat object. This
eliminates the need for resolvers in the target.
This provides the ivl_target.h interface for class definitions
and expressions, the vvp code generator support for class objects
and properties, and the vvp run time support. Trivial class objects
now seem to work.
Add properties to the classes, and elaborate expressions that
have class properties. Describe class object property references
all the way down to the stub target.
This involves working out the code to get the base type of a select
expression of a darray. Also added the runtime support for darrays
with real value elements.
Added: basic vpiPort VPI Objects for vpiModulkes
vpiDirection, vpiPortIndex, vpiName, vpiSize attributes
Since ports do not exist as net-like entities (nets either side
module instance boundaries are in effect connect directly in
the language front-ends internal representation) the port information
is effectively just meta-data passed through t-dll interface and
output as a additional annotation of module scopes in vvp.
Added: vpiLocalParam attribute for vpiParameter VPI objects
Added: support build for 32-bit target on 64-bit host (--with-m32
option to configure.in and minor tweaks to Makefiles and systemc-vpi).
Making the scope type NESTED_MODULE was just plain wrong, because
it didn't really encapsulate the meaning of program blocks OR
nested modules. So instead create nested_module() and program_block()
flags and use those to test scope constraints.
An important advantage of program blocks is its ability to nest
within a module. This winds up also allowing modules to nest, which
is legal but presumably less used feature.
A NetScope object currently has two lists of parameters, 'parameters'
and 'localparams'. However, user-declared localparams are stored in
the 'parameters' list, and 'localparams' is only used for adding
genvar values to the parameter list. There seems no good reason to
maintain separate lists, as the lists are merged before being passed
to the target DLL. This is most likely a hang-over from older code.
This patch extends the compiler to support all specparam declarations
allowed by the 1364-2005 standard. For compatibility with other
simulators, it allows specparam values to be used in any constant
expression, but outputs a warning message and disables run-time
annotation of a specparam if it is used in an expression that must
be evaluated at compile time.