iverilog/vvp/schedule.cc

308 lines
7.4 KiB
C++
Raw Normal View History

2001-03-11 01:29:38 +01:00
/*
* Copyright (c) 2001 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: schedule.cc,v 1.9 2001/05/08 23:32:26 steve Exp $"
2001-03-11 01:29:38 +01:00
#endif
# include "schedule.h"
2001-03-11 23:42:11 +01:00
# include "functor.h"
# include "memory.h"
2001-03-11 01:29:38 +01:00
# include "vthread.h"
# include <malloc.h>
# include <assert.h>
/*
* The event queue is arranged as a skip list, with the simulation
* time the key to the list. The simulation time is stored in each
* event as the delta time from the previous event so that there is no
* limit to the time values that are supported.
*
* The list is started by the ``list'' variable below. This points to
* the very next event to be executed. Each event, in turn, points to
* the next item in the event queue with the ->next member.
*
* The ->last member points to the last event in the current
* time. That is, all the events to and including the ->last event are
* zero delay from the current event.
*/
2001-03-11 01:29:38 +01:00
struct event_s {
unsigned delay;
2001-03-11 23:42:11 +01:00
union {
vthread_t thr;
vvp_ipoint_t fun;
vvp_gen_event_t obj;
2001-03-11 23:42:11 +01:00
};
unsigned val :2;
unsigned type :2;
2001-03-11 01:29:38 +01:00
struct event_s*next;
struct event_s*last;
};
const unsigned TYPE_GEN = 0;
2001-04-18 06:21:23 +02:00
const unsigned TYPE_THREAD = 1;
const unsigned TYPE_PROP = 2;
const unsigned TYPE_ASSIGN = 3;
2001-03-11 01:29:38 +01:00
/*
** These event_s will be required a lot, at high frequency.
** Once allocated, we never free them, but stash them away for next time.
*/
static struct event_s* free_list = 0;
inline static struct event_s* e_alloc()
{
struct event_s* cur = free_list;
if (!cur)
{
cur = (struct event_s*) malloc(sizeof(struct event_s));
// cur = (struct event_s*) calloc(1, sizeof(struct event_s));
}
else
{
free_list = cur->next;
// memset(cur, 0, sizeof(struct event_s));
}
return cur;
}
inline static void e_free(struct event_s* cur)
{
cur->next = free_list;
free_list = cur;
}
/*
* This is the head of the list of pending events.
*/
2001-03-11 01:29:38 +01:00
static struct event_s* list = 0;
/*
* This flag is true until a VPI task or function finishes the
* simulation.
*/
static bool schedule_runnable = true;
void schedule_finish(int)
{
schedule_runnable = false;
}
bool schedule_finished(void)
{
return !schedule_runnable;
}
/*
* This function does all the hard work of putting an event into the
* event queue. The event delay is taken from the event structure
* itself, and the structure is placed in the right place in the
* queue.
*/
2001-03-11 01:29:38 +01:00
static void schedule_event_(struct event_s*cur)
{
cur->last = cur;
/* If the list is completely empty, then start the list with
this the only event. */
2001-03-11 01:29:38 +01:00
if (list == 0) {
list = cur;
cur->next = 0;
return;
}
struct event_s*idx = list;
if (cur->delay < idx->delay) {
/* If this new event is earlier then even the first
event, then insert it in front. Adjust the delay of
the next event, and set the start to me. */
2001-03-11 01:29:38 +01:00
idx->delay -= cur->delay;
cur->next = idx;
list = cur;
} else {
/* Look for the first event after the cur
event. Decrease the cur->delay as I go, and use the
skip member to accellerate the search. When I'm done,
prev will point to the even immediately before where
this event goes. */
struct event_s*prev = idx;
2001-03-11 01:29:38 +01:00
while (cur->delay > idx->delay) {
cur->delay -= idx->delay;
prev = idx->last;
if (prev->next == 0) {
cur->next = 0;
prev->next = cur;
return;
}
idx = prev->next;
}
if (cur->delay < idx->delay) {
idx->delay -= cur->delay;
//cur->last = cur;
2001-03-11 01:29:38 +01:00
cur->next = idx;
prev->next = cur;
} else {
assert(cur->delay == idx->delay);
cur->delay = 0;
//cur->last = cur;
2001-03-11 01:29:38 +01:00
cur->next = idx->last->next;
idx->last->next = cur;
idx->last = cur;
}
}
}
void schedule_vthread(vthread_t thr, unsigned delay)
{
struct event_s*cur = e_alloc();
2001-03-11 01:29:38 +01:00
cur->delay = delay;
cur->thr = thr;
2001-03-11 23:42:11 +01:00
cur->type = TYPE_THREAD;
vthread_mark_scheduled(thr);
2001-03-11 01:29:38 +01:00
schedule_event_(cur);
}
void schedule_functor(vvp_ipoint_t fun, unsigned delay)
{
struct event_s*cur = e_alloc();
2001-03-11 01:29:38 +01:00
cur->delay = delay;
cur->fun = fun;
2001-03-11 23:42:11 +01:00
cur->type = TYPE_PROP;
2001-03-11 01:29:38 +01:00
schedule_event_(cur);
}
2001-03-11 23:42:11 +01:00
void schedule_assign(vvp_ipoint_t fun, unsigned char val, unsigned delay)
{
struct event_s*cur = e_alloc();
2001-03-11 23:42:11 +01:00
cur->delay = delay;
cur->fun = fun;
cur->val = val;
cur->type= TYPE_ASSIGN;
schedule_event_(cur);
}
2001-03-11 23:42:11 +01:00
void schedule_generic(vvp_gen_event_t obj, unsigned char val, unsigned delay)
{
struct event_s*cur = e_alloc();
cur->delay = delay;
cur->obj = obj;
cur->val = val;
cur->type= TYPE_GEN;
schedule_event_(cur);
2001-03-11 23:42:11 +01:00
}
2001-03-11 01:29:38 +01:00
static unsigned long schedule_time;
unsigned long schedule_simtime(void)
{ return schedule_time; }
2001-03-11 01:29:38 +01:00
void schedule_simulate(void)
{
schedule_time = 0;
while (schedule_runnable && list) {
2001-03-11 01:29:38 +01:00
/* Pull the first item off the list. Fixup the last
pointer in the next cell, if necessary. */
struct event_s*cur = list;
list = cur->next;
if (cur->last != cur) {
assert(list);
2001-03-11 01:29:38 +01:00
assert(list->delay == 0);
list->last = cur->last;
}
schedule_time += cur->delay;
//printf("TIME: %u\n", schedule_time);
2001-03-11 23:42:11 +01:00
switch (cur->type) {
case TYPE_THREAD:
2001-03-11 01:29:38 +01:00
vthread_run(cur->thr);
2001-03-11 23:42:11 +01:00
break;
case TYPE_PROP:
//printf("Propagate %p\n", cur->fun);
2001-03-11 23:42:11 +01:00
functor_propagate(cur->fun);
break;
2001-03-11 01:29:38 +01:00
2001-03-11 23:42:11 +01:00
case TYPE_ASSIGN:
functor_set(cur->fun, cur->val, 6, 6);
2001-03-11 23:42:11 +01:00
break;
2001-03-11 01:29:38 +01:00
case TYPE_GEN:
if (cur->obj && cur->obj->run)
cur->obj->run(cur->obj, cur->val);
break;
2001-03-11 01:29:38 +01:00
}
e_free(cur);
2001-03-11 01:29:38 +01:00
}
}
/*
* $Log: schedule.cc,v $
* Revision 1.9 2001/05/08 23:32:26 steve
* Add to the debugger the ability to view and
* break on functors.
*
* Add strengths to functors at compile time,
* and Make functors pass their strengths as they
* propagate their output.
*
* Revision 1.8 2001/05/05 23:51:49 steve
* Forward the simulation time for every event.
*
* Revision 1.7 2001/05/01 01:09:39 steve
* Add support for memory objects. (Stephan Boettcher)
*
* Revision 1.6 2001/04/21 00:34:39 steve
* Working %disable and reap handling references from scheduler.
*
2001-04-18 06:21:23 +02:00
* Revision 1.5 2001/04/18 04:21:23 steve
* Put threads into scopes.
*
* Revision 1.4 2001/03/31 19:00:43 steve
* Add VPI support for the simulation time.
*
* Revision 1.3 2001/03/19 01:55:38 steve
* Add support for the vpiReset sim control.
*
2001-03-11 23:42:11 +01:00
* Revision 1.2 2001/03/11 22:42:11 steve
* Functor values and propagation.
*
2001-03-11 01:29:38 +01:00
* Revision 1.1 2001/03/11 00:29:39 steve
* Add the vvp engine to cvs.
*
*/