iverilog/tgt-vvp/vvp_process.c

1068 lines
28 KiB
C
Raw Normal View History

2001-03-19 02:20:46 +01:00
/*
* Copyright (c) 2001 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: vvp_process.c,v 1.41 2001/08/16 03:45:17 steve Exp $"
2001-03-19 02:20:46 +01:00
#endif
# include "vvp_priv.h"
2001-04-18 07:12:03 +02:00
# include <string.h>
# include <assert.h>
# include <malloc.h>
2001-04-18 07:12:03 +02:00
static int show_statement(ivl_statement_t net, ivl_scope_t sscope);
2001-03-19 02:20:46 +01:00
2001-05-17 06:37:02 +02:00
unsigned local_count = 0;
unsigned thread_count = 0;
2001-03-19 02:20:46 +01:00
/*
* This file includes the code needed to generate VVP code for
* processes. Scopes are already declared, we generate here the
* executable code for the processes.
*/
2001-03-23 02:54:32 +01:00
unsigned bitchar_to_idx(char bit)
{
switch (bit) {
case '0':
return 0;
case '1':
return 1;
case 'x':
return 2;
case 'z':
return 3;
default:
assert(0);
return 0;
}
}
/*
* These functions handle the blocking assignment. Use the %set
* instruction to perform the actual assignment, and calculate any
* lvalues and rvalues that need calculating.
*
* The set_to_nexus function takes a particular nexus and generates
* the %set statements to assign the value.
*
* The show_stmt_assign function looks at the assign statement, scans
* the l-values, and matches bits of the r-value with the correct
* nexus.
*/
2001-03-23 02:54:32 +01:00
static void set_to_nexus(ivl_nexus_t nex, unsigned bit)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
unsigned pin = ivl_nexus_ptr_pin(ptr);
ivl_signal_t sig = ivl_nexus_ptr_sig(ptr);
if (sig == 0)
continue;
2001-03-23 02:54:32 +01:00
fprintf(vvp_out, " %%set V_%s[%u], %u;\n",
vvp_mangle_id(ivl_signal_name(sig)), pin, bit);
}
}
static void set_to_memory(ivl_memory_t mem, unsigned idx, unsigned bit)
{
if (idx)
fprintf(vvp_out, " %%ix/add 3, 1;\n");
fprintf(vvp_out, " %%set/m M_%s, %u;\n",
vvp_mangle_id(ivl_memory_name(mem)), bit);
}
2001-04-03 06:50:37 +02:00
static void assign_to_nexus(ivl_nexus_t nex, unsigned bit, unsigned delay)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
unsigned pin = ivl_nexus_ptr_pin(ptr);
ivl_signal_t sig = ivl_nexus_ptr_sig(ptr);
if (sig == 0)
continue;
fprintf(vvp_out, " %%assign V_%s[%u], %u, %u;\n",
vvp_mangle_id(ivl_signal_name(sig)), pin, delay, bit);
2001-04-03 06:50:37 +02:00
}
}
static void assign_to_memory(ivl_memory_t mem, unsigned idx,
unsigned bit, unsigned delay)
{
if (idx)
fprintf(vvp_out, " %%ix/add 3, 1;\n");
fprintf(vvp_out, " %%assign/m M_%s, %u, %u;\n",
vvp_mangle_id(ivl_memory_name(mem)), delay, bit);
}
static int show_stmt_assign(ivl_statement_t net)
{
ivl_lval_t lval;
ivl_expr_t rval = ivl_stmt_rval(net);
ivl_memory_t mem;
/* Handle the special case that the r-value is a constant. We
can generate the %set statement directly, without any worry
about generating code to evaluate the r-value expressions. */
if (ivl_expr_type(rval) == IVL_EX_NUMBER) {
unsigned idx;
const char*bits = ivl_expr_bits(rval);
unsigned wid = ivl_expr_width(rval);
/* XXXX Only single l-value supported for now */
assert(ivl_stmt_lvals(net) == 1);
lval = ivl_stmt_lval(net, 0);
/* XXXX No mux support yet. */
assert(ivl_lval_mux(lval) == 0);
mem = ivl_lval_mem(lval);
if (mem)
draw_memory_index_expr(mem, ivl_lval_idx(lval));
if (wid > ivl_lval_pins(lval))
wid = ivl_lval_pins(lval);
for (idx = 0 ; idx < wid ; idx += 1)
if (mem)
set_to_memory(mem, idx, bitchar_to_idx(bits[idx]));
else
set_to_nexus(ivl_lval_pin(lval, idx),
bitchar_to_idx(bits[idx]));
for (idx = wid ; idx < ivl_lval_pins(lval) ; idx += 1)
if (mem)
set_to_memory(mem, idx, 0);
else
set_to_nexus(ivl_lval_pin(lval, idx), 0);
return 0;
}
2001-03-23 02:54:32 +01:00
{ struct vector_info res = draw_eval_expr(rval);
unsigned wid = res.wid;
unsigned idx;
/* XXXX Only single l-value supported for now */
assert(ivl_stmt_lvals(net) == 1);
lval = ivl_stmt_lval(net, 0);
/* XXXX No mux support yet. */
assert(ivl_lval_mux(lval) == 0);
mem = ivl_lval_mem(lval);
2001-03-23 02:54:32 +01:00
if (ivl_lval_pins(lval) < wid)
wid = ivl_lval_pins(lval);
if (mem)
draw_memory_index_expr(mem, ivl_lval_idx(lval));
2001-04-21 05:26:23 +02:00
for (idx = 0 ; idx < wid ; idx += 1) {
unsigned bidx = res.base < 4 ? res.base : (res.base+idx);
if (mem)
set_to_memory(mem, idx, bidx);
else
set_to_nexus(ivl_lval_pin(lval, idx), bidx);
2001-04-21 05:26:23 +02:00
}
2001-03-23 02:54:32 +01:00
for (idx = wid ; idx < ivl_lval_pins(lval) ; idx += 1)
if (mem)
set_to_memory(mem, idx, 0);
else
set_to_nexus(ivl_lval_pin(lval, idx), 0);
2001-04-02 06:09:20 +02:00
clr_vector(res);
2001-03-23 02:54:32 +01:00
}
return 0;
}
2001-04-03 06:50:37 +02:00
static int show_stmt_assign_nb(ivl_statement_t net)
{
ivl_lval_t lval;
ivl_expr_t rval = ivl_stmt_rval(net);
ivl_expr_t del = ivl_stmt_delay_expr(net);
ivl_memory_t mem;
unsigned long delay = 0;
if (del != 0) {
/* XXXX Only support constant values. */
assert(ivl_expr_type(del) == IVL_EX_ULONG);
delay = ivl_expr_uvalue(del);
}
2001-04-03 06:50:37 +02:00
/* Handle the special case that the r-value is a constant. We
can generate the %set statement directly, without any worry
about generating code to evaluate the r-value expressions. */
if (ivl_expr_type(rval) == IVL_EX_NUMBER) {
unsigned idx;
const char*bits = ivl_expr_bits(rval);
unsigned wid = ivl_expr_width(rval);
2001-04-03 06:50:37 +02:00
/* XXXX Only single l-value supported for now */
assert(ivl_stmt_lvals(net) == 1);
lval = ivl_stmt_lval(net, 0);
/* XXXX No mux support yet. */
assert(ivl_lval_mux(lval) == 0);
mem = ivl_lval_mem(lval);
2001-04-03 06:50:37 +02:00
if (mem)
draw_memory_index_expr(mem, ivl_lval_idx(lval));
2001-04-03 06:50:37 +02:00
if (wid > ivl_lval_pins(lval))
wid = ivl_lval_pins(lval);
for (idx = 0 ; idx < wid ; idx += 1)
if (mem)
assign_to_memory(mem, idx,
bitchar_to_idx(bits[idx]), delay);
else
assign_to_nexus(ivl_lval_pin(lval, idx),
bitchar_to_idx(bits[idx]), delay);
for (idx = wid ; idx < ivl_lval_pins(lval) ; idx += 1)
if (mem)
assign_to_memory(mem, idx, 0, delay);
else
assign_to_nexus(ivl_lval_pin(lval, idx), 0, delay);
2001-04-03 06:50:37 +02:00
return 0;
}
{ struct vector_info res = draw_eval_expr(rval);
unsigned wid = res.wid;
unsigned idx;
/* XXXX Only single l-value supported for now */
assert(ivl_stmt_lvals(net) == 1);
lval = ivl_stmt_lval(net, 0);
/* XXXX No mux support yet. */
assert(ivl_lval_mux(lval) == 0);
mem = ivl_lval_mem(lval);
2001-04-03 06:50:37 +02:00
if (ivl_lval_pins(lval) < wid)
wid = ivl_lval_pins(lval);
if (mem)
draw_memory_index_expr(mem, ivl_lval_idx(lval));
for (idx = 0 ; idx < wid ; idx += 1) {
unsigned bidx = res.base < 4 ? res.base : (res.base+idx);
if (mem)
assign_to_memory(mem, idx, bidx, delay);
else
assign_to_nexus(ivl_lval_pin(lval, idx), bidx, delay);
}
2001-04-03 06:50:37 +02:00
for (idx = wid ; idx < ivl_lval_pins(lval) ; idx += 1)
if (mem)
assign_to_memory(mem, idx, 0, delay);
else
assign_to_nexus(ivl_lval_pin(lval, idx), 0, delay);
2001-04-03 06:50:37 +02:00
clr_vector(res);
}
return 0;
}
2001-04-21 02:55:46 +02:00
static int show_stmt_block(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
unsigned idx;
unsigned cnt = ivl_stmt_block_count(net);
for (idx = 0 ; idx < cnt ; idx += 1) {
rc += show_statement(ivl_stmt_block_stmt(net, idx), sscope);
}
return rc;
}
2001-04-18 07:12:03 +02:00
static int show_stmt_case(ivl_statement_t net, ivl_scope_t sscope)
2001-03-31 19:36:38 +02:00
{
ivl_expr_t exp = ivl_stmt_cond_expr(net);
struct vector_info cond = draw_eval_expr(exp);
unsigned count = ivl_stmt_case_count(net);
unsigned local_base = local_count;
unsigned idx, default_case;
local_count += count + 1;
/* First draw the branch table. All the non-default cases
generate a branch out of here, to the code that implements
the case. The default will fall through all the tests. */
default_case = count;
for (idx = 0 ; idx < count ; idx += 1) {
ivl_expr_t cex = ivl_stmt_case_expr(net, idx);
struct vector_info cvec;
if (cex == 0) {
default_case = idx;
continue;
}
cvec = draw_eval_expr_wid(cex, cond.wid);
assert(cvec.wid == cond.wid);
2001-03-31 19:36:38 +02:00
2001-04-01 06:34:59 +02:00
switch (ivl_statement_type(net)) {
2001-03-31 19:36:38 +02:00
2001-04-01 06:34:59 +02:00
case IVL_ST_CASE:
fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n",
cond.base, cvec.base, cond.wid);
fprintf(vvp_out, " %%jmp/1 T_%d.%d, 6;\n",
thread_count, local_base+idx);
break;
case IVL_ST_CASEX:
fprintf(vvp_out, " %%cmp/x %u, %u, %u;\n",
cond.base, cvec.base, cond.wid);
fprintf(vvp_out, " %%jmp/1 T_%d.%d, 4;\n",
thread_count, local_base+idx);
break;
case IVL_ST_CASEZ:
fprintf(vvp_out, " %%cmp/z %u, %u, %u;\n",
cond.base, cvec.base, cond.wid);
fprintf(vvp_out, " %%jmp/1 T_%d.%d, 4;\n",
thread_count, local_base+idx);
break;
default:
assert(0);
}
2001-03-31 19:36:38 +02:00
/* Done with the case expression */
clr_vector(cvec);
}
/* Done with the condition expression */
clr_vector(cond);
/* Emit code for the default case. */
if (default_case < count) {
ivl_statement_t cst = ivl_stmt_case_stmt(net, default_case);
2001-04-18 07:12:03 +02:00
show_statement(cst, sscope);
2001-03-31 19:36:38 +02:00
}
/* Jump to the out of the case. */
fprintf(vvp_out, " %%jmp T_%d.%d;\n", thread_count,
local_base+count);
for (idx = 0 ; idx < count ; idx += 1) {
ivl_statement_t cst = ivl_stmt_case_stmt(net, idx);
if (idx == default_case)
continue;
2001-05-24 06:31:00 +02:00
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, local_base+idx);
2001-04-18 07:12:03 +02:00
show_statement(cst, sscope);
2001-03-31 19:36:38 +02:00
fprintf(vvp_out, " %%jmp T_%d.%d;\n", thread_count,
local_base+count);
}
/* The out of the case. */
2001-05-24 06:31:00 +02:00
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, local_base+count);
2001-03-31 19:36:38 +02:00
return 0;
}
2001-04-18 07:12:03 +02:00
static int show_stmt_condit(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
unsigned lab_false, lab_out;
ivl_expr_t exp = ivl_stmt_cond_expr(net);
struct vector_info cond = draw_eval_expr(exp);
assert(cond.wid == 1);
lab_false = local_count++;
lab_out = local_count++;
2001-03-27 08:27:40 +02:00
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, %u;\n",
thread_count, lab_false, cond.base);
/* Done with the condition expression. */
clr_vector(cond);
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_cond_true(net), sscope);
if (ivl_stmt_cond_false(net)) {
2001-03-27 08:27:40 +02:00
fprintf(vvp_out, " %%jmp T_%d.%d;\n", thread_count, lab_out);
fprintf(vvp_out, "T_%d.%u ;\n", thread_count, lab_false);
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_cond_false(net), sscope);
fprintf(vvp_out, "T_%d.%u ;\n", thread_count, lab_out);
} else {
fprintf(vvp_out, "T_%d.%u ;\n", thread_count, lab_false);
}
return rc;
}
/*
* The delay statement is easy. Simply write a ``%delay <n>''
* instruction to delay the thread, then draw the included statement.
* The delay statement comes from verilog code like this:
*
* ...
* #<delay> <stmt>;
*/
2001-04-18 07:12:03 +02:00
static int show_stmt_delay(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
unsigned long delay = ivl_stmt_delay_val(net);
ivl_statement_t stmt = ivl_stmt_sub_stmt(net);
fprintf(vvp_out, " %%delay %lu;\n", delay);
2001-04-18 07:12:03 +02:00
rc += show_statement(stmt, sscope);
return rc;
}
2001-07-19 06:55:06 +02:00
/*
* The delayx statement is slightly more complex in that it is
* necessary to calculate the delay first. Load the calculated delay
* into and index register and use the %delayx instruction to do the
* actual delay.
*/
static int show_stmt_delayx(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
ivl_expr_t exp = ivl_stmt_delay_expr(net);
ivl_statement_t stmt = ivl_stmt_sub_stmt(net);
{ struct vector_info del = draw_eval_expr(exp);
fprintf(vvp_out, " %%ix/get 0, %u, %u;\n", del.base, del.wid);
clr_vector(del);
}
fprintf(vvp_out, " %%delayx 0;\n");
rc += show_statement(stmt, sscope);
return rc;
}
2001-04-21 02:55:46 +02:00
static int show_stmt_disable(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
ivl_scope_t target = ivl_stmt_call(net);
fprintf(vvp_out, " %%disable S_%s;\n",
vvp_mangle_id(ivl_scope_name(target)));
2001-04-21 02:55:46 +02:00
return rc;
}
2001-04-18 07:12:03 +02:00
static int show_stmt_forever(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
ivl_statement_t stmt = ivl_stmt_sub_stmt(net);
unsigned lab_top = local_count++;
fprintf(vvp_out, "T_%u.%u ;\n", thread_count, lab_top);
2001-04-18 07:12:03 +02:00
rc += show_statement(stmt, sscope);
fprintf(vvp_out, " %%jmp T_%u.%u;\n", thread_count, lab_top);
return rc;
}
2001-04-18 07:12:03 +02:00
static int show_stmt_fork(ivl_statement_t net, ivl_scope_t sscope)
{
unsigned idx;
int rc = 0;
static int transient_id = 0;
unsigned cnt = ivl_stmt_block_count(net);
int out = transient_id++;
/* Draw a fork statement for all but one of the threads of the
fork/join. Send the threads off to a bit of code where they
are implemented. */
for (idx = 0 ; idx < cnt-1 ; idx += 1) {
2001-04-18 07:12:03 +02:00
fprintf(vvp_out, " %%fork t_%u, S_%s;\n",
transient_id+idx,
vvp_mangle_id(ivl_scope_name(sscope)));
}
/* Draw code to execute the remaining thread in the current
thread, then generate enough joins to merge back together. */
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_block_stmt(net, cnt-1), sscope);
for (idx = 0 ; idx < cnt-1 ; idx += 1) {
fprintf(vvp_out, " %%join;\n");
}
fprintf(vvp_out, " %%jmp t_%u;\n", out);
for (idx = 0 ; idx < cnt-1 ; idx += 1) {
fprintf(vvp_out, "t_%u\n", transient_id+idx);
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_block_stmt(net, idx), sscope);
fprintf(vvp_out, " %%end;\n");
}
2001-04-18 07:12:03 +02:00
/* This is the label for the out. Use this to branch around
the implementations of all the child threads. */
fprintf(vvp_out, "t_%u\n", out);
return rc;
}
/*
* noop statements are implemented by doing nothing.
*/
static int show_stmt_noop(ivl_statement_t net)
{
return 0;
}
2001-03-19 02:20:46 +01:00
2001-04-18 07:12:03 +02:00
static int show_stmt_repeat(ivl_statement_t net, ivl_scope_t sscope)
{
int rc = 0;
unsigned lab_top = local_count++, lab_out = local_count++;
ivl_expr_t exp = ivl_stmt_cond_expr(net);
struct vector_info cnt = draw_eval_expr(exp);
/* Test that 0 < expr */
fprintf(vvp_out, "T_%u.%u %%cmp/u 0, %u, %u;\n", thread_count,
lab_top, cnt.base, cnt.wid);
fprintf(vvp_out, " %%jmp/0xz T_%u.%u, 5;\n", thread_count, lab_out);
/* This adds -1 (all ones in 2's complement) to the count. */
fprintf(vvp_out, " %%add %u, 1, %u;\n", cnt.base, cnt.wid);
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_sub_stmt(net), sscope);
fprintf(vvp_out, " %%jmp T_%u.%u;\n", thread_count, lab_top);
fprintf(vvp_out, "T_%u.%u ;\n", thread_count, lab_out);
clr_vector(cnt);
return rc;
}
2001-03-29 05:47:38 +02:00
static int show_stmt_trigger(ivl_statement_t net)
{
ivl_event_t ev = ivl_stmt_event(net);
assert(ev);
fprintf(vvp_out, " %%set E_%s, 0;\n",
vvp_mangle_id(ivl_event_name(ev)));
2001-03-29 05:47:38 +02:00
return 0;
}
2001-04-02 04:28:12 +02:00
static int show_stmt_utask(ivl_statement_t net)
{
ivl_scope_t task = ivl_stmt_call(net);
fprintf(vvp_out, " %%fork TD_%s",
vvp_mangle_id(ivl_scope_name(task)));
fprintf(vvp_out, ", S_%s;\n",
vvp_mangle_id(ivl_scope_name(task)));
2001-04-02 04:28:12 +02:00
fprintf(vvp_out, " %%join;\n");
return 0;
}
2001-04-18 07:12:03 +02:00
static int show_stmt_wait(ivl_statement_t net, ivl_scope_t sscope)
2001-03-27 08:27:40 +02:00
{
ivl_event_t ev = ivl_stmt_event(net);
fprintf(vvp_out, " %%wait E_%s;\n",
vvp_mangle_id(ivl_event_name(ev)));
2001-03-27 08:27:40 +02:00
2001-04-18 07:12:03 +02:00
return show_statement(ivl_stmt_sub_stmt(net), sscope);
2001-03-27 08:27:40 +02:00
}
2001-04-18 07:12:03 +02:00
static int show_stmt_while(ivl_statement_t net, ivl_scope_t sscope)
2001-04-01 08:49:04 +02:00
{
int rc = 0;
struct vector_info cvec;
unsigned top_label = local_count++;
unsigned out_label = local_count++;
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, top_label);
2001-04-01 08:49:04 +02:00
/* Draw the evaluation of the condition expression, and test
the result. If the expression evaluates to false, then
branch to the out label. */
cvec = draw_eval_expr(ivl_stmt_cond_expr(net));
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, %u;\n",
thread_count, out_label, cvec.base);
clr_vector(cvec);
/* Draw the body of the loop. */
2001-04-18 07:12:03 +02:00
rc += show_statement(ivl_stmt_sub_stmt(net), sscope);
2001-04-01 08:49:04 +02:00
/* This is the bottom of the loop. branch to the top where the
test is repeased, and also draw the out label. */
fprintf(vvp_out, " %%jmp T_%d.%d;\n", thread_count, top_label);
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, out_label);
2001-04-01 08:49:04 +02:00
return rc;
}
static int show_system_task_call(ivl_statement_t net)
2001-03-19 02:20:46 +01:00
{
unsigned idx;
unsigned parm_count = ivl_stmt_parm_count(net);
struct vector_info *vec = 0x0;
unsigned int vecs= 0;
unsigned int veci= 0;
2001-03-19 02:20:46 +01:00
if (parm_count == 0) {
fprintf(vvp_out, " %%vpi_call \"%s\";\n", ivl_stmt_name(net));
return 0;
2001-03-19 02:20:46 +01:00
}
for (idx = 0 ; idx < parm_count ; idx += 1) {
ivl_expr_t expr = ivl_stmt_parm(net, idx);
switch (ivl_expr_type(expr)) {
case IVL_EX_NONE:
case IVL_EX_NUMBER:
case IVL_EX_STRING:
case IVL_EX_SCOPE:
case IVL_EX_SFUNC:
continue;
case IVL_EX_SIGNAL:
/* If the signal node is narrower then the signal
itself, then this is a part select so I'm going
to need to evaluate the expression. */
if (ivl_expr_width(expr) !=
ivl_signal_pins(ivl_expr_signal(expr))) {
break;
} else {
continue;
}
case IVL_EX_MEMORY:
if (!ivl_expr_oper1(expr)) {
continue;
}
default:
break;
}
vec = (struct vector_info *)
realloc(vec, (vecs+1)*sizeof(struct vector_info));
vec[vecs] = draw_eval_expr(expr);
vecs++;
}
2001-03-19 02:20:46 +01:00
fprintf(vvp_out, " %%vpi_call \"%s\"", ivl_stmt_name(net));
for (idx = 0 ; idx < parm_count ; idx += 1) {
ivl_expr_t expr = ivl_stmt_parm(net, idx);
switch (ivl_expr_type(expr)) {
case IVL_EX_NONE:
fprintf(vvp_out, ", \" \"");
continue;
case IVL_EX_NUMBER: {
unsigned bit, wid = ivl_expr_width(expr);
const char*bits = ivl_expr_bits(expr);
2001-04-04 06:14:09 +02:00
fprintf(vvp_out, ", %u'b", wid);
for (bit = wid ; bit > 0 ; bit -= 1)
2001-04-04 06:14:09 +02:00
fputc(bits[bit-1], vvp_out);
continue;
}
2001-03-25 05:24:10 +02:00
case IVL_EX_SIGNAL:
/* If this is a part select, then the value was
calculated above. Otherwise, just pass the
signal. */
if (ivl_expr_width(expr) !=
ivl_signal_pins(ivl_expr_signal(expr))) {
break;
} else {
fprintf(vvp_out, ", V_%s",
vvp_mangle_id(ivl_expr_name(expr)));
continue;
}
2001-03-19 02:20:46 +01:00
case IVL_EX_STRING:
fprintf(vvp_out, ", \"%s\"",
ivl_expr_string(expr));
continue;
2001-03-19 02:20:46 +01:00
case IVL_EX_SCOPE:
fprintf(vvp_out, ", S_%s",
vvp_mangle_id(ivl_scope_name(ivl_expr_scope(expr))));
continue;
2001-03-31 21:08:22 +02:00
case IVL_EX_SFUNC:
if (strcmp("$time", ivl_expr_name(expr)) == 0)
fprintf(vvp_out, ", $time");
else
fprintf(vvp_out, ", ?");
continue;
case IVL_EX_MEMORY:
if (!ivl_expr_oper1(expr)) {
fprintf(vvp_out, ", M_%s",
vvp_mangle_id(ivl_expr_name(expr)));
continue;
}
2001-03-31 21:08:22 +02:00
break;
2001-03-19 02:20:46 +01:00
default:
break;
}
assert(veci < vecs);
fprintf(vvp_out, ", T<%u,%u>", vec[veci].base, vec[veci].wid);
veci++;
}
assert(veci == vecs);
if (vecs) {
for (idx = 0; idx < vecs; idx++)
clr_vector(vec[idx]);
free(vec);
2001-03-19 02:20:46 +01:00
}
fprintf(vvp_out, ";\n");
return 0;
2001-03-19 02:20:46 +01:00
}
/*
* This function draws a statement as vvp assembly. It basically
* switches on the statement type and draws code based on the type and
* further specifics.
*/
2001-04-18 07:12:03 +02:00
static int show_statement(ivl_statement_t net, ivl_scope_t sscope)
2001-03-19 02:20:46 +01:00
{
const ivl_statement_type_t code = ivl_statement_type(net);
int rc = 0;
2001-03-19 02:20:46 +01:00
switch (code) {
case IVL_ST_ASSIGN:
rc += show_stmt_assign(net);
break;
2001-04-03 06:50:37 +02:00
case IVL_ST_ASSIGN_NB:
rc += show_stmt_assign_nb(net);
break;
2001-04-21 02:55:46 +02:00
case IVL_ST_BLOCK:
rc += show_stmt_block(net, sscope);
break;
2001-03-19 02:20:46 +01:00
2001-03-31 19:36:38 +02:00
case IVL_ST_CASE:
2001-04-01 06:34:59 +02:00
case IVL_ST_CASEX:
case IVL_ST_CASEZ:
2001-04-18 07:12:03 +02:00
rc += show_stmt_case(net, sscope);
2001-03-31 19:36:38 +02:00
break;
case IVL_ST_CONDIT:
2001-04-18 07:12:03 +02:00
rc += show_stmt_condit(net, sscope);
break;
case IVL_ST_DELAY:
2001-04-18 07:12:03 +02:00
rc += show_stmt_delay(net, sscope);
break;
2001-07-19 06:55:06 +02:00
case IVL_ST_DELAYX:
rc += show_stmt_delayx(net, sscope);
break;
2001-04-21 02:55:46 +02:00
case IVL_ST_DISABLE:
rc += show_stmt_disable(net, sscope);
break;
case IVL_ST_FOREVER:
2001-04-18 07:12:03 +02:00
rc += show_stmt_forever(net, sscope);
break;
case IVL_ST_FORK:
2001-04-18 07:12:03 +02:00
rc += show_stmt_fork(net, sscope);
break;
case IVL_ST_NOOP:
rc += show_stmt_noop(net);
break;
case IVL_ST_REPEAT:
2001-04-18 07:12:03 +02:00
rc += show_stmt_repeat(net, sscope);
break;
2001-03-19 02:20:46 +01:00
case IVL_ST_STASK:
rc += show_system_task_call(net);
2001-03-19 02:20:46 +01:00
break;
2001-03-29 05:47:38 +02:00
case IVL_ST_TRIGGER:
rc += show_stmt_trigger(net);
break;
2001-04-02 04:28:12 +02:00
case IVL_ST_UTASK:
rc += show_stmt_utask(net);
break;
2001-03-27 08:27:40 +02:00
case IVL_ST_WAIT:
2001-04-18 07:12:03 +02:00
rc += show_stmt_wait(net, sscope);
2001-03-27 08:27:40 +02:00
break;
2001-04-01 08:49:04 +02:00
case IVL_ST_WHILE:
2001-04-18 07:12:03 +02:00
rc += show_stmt_while(net, sscope);
2001-04-01 08:49:04 +02:00
break;
2001-03-19 02:20:46 +01:00
default:
fprintf(stderr, "vvp.tgt: Unable to draw statement type %u\n",
code);
rc += 1;
2001-03-19 02:20:46 +01:00
break;
}
return rc;
2001-03-19 02:20:46 +01:00
}
2001-03-27 08:27:40 +02:00
2001-03-19 02:20:46 +01:00
/*
* The process as a whole is surrounded by this code. We generate a
* start label that the .thread statement can use, and we generate
* code to terminate the thread.
*/
int draw_process(ivl_process_t net, void*x)
{
int rc = 0;
2001-03-20 02:44:13 +01:00
ivl_scope_t scope = ivl_process_scope(net);
2001-03-27 08:27:40 +02:00
ivl_statement_t stmt = ivl_process_stmt(net);
2001-03-20 02:44:13 +01:00
local_count = 0;
fprintf(vvp_out, " .scope S_%s;\n",
vvp_mangle_id(ivl_scope_name(scope)));
2001-03-19 02:20:46 +01:00
/* Generate the entry label. Just give the thread a number so
that we ar certain the label is unique. */
2001-04-01 08:49:04 +02:00
fprintf(vvp_out, "T_%d ;\n", thread_count);
2001-03-19 02:20:46 +01:00
/* Draw the contents of the thread. */
2001-04-18 07:12:03 +02:00
rc += show_statement(stmt, scope);
2001-03-19 02:20:46 +01:00
/* Terminate the thread with either an %end instruction (initial
statements) or a %jmp back to the beginning of the thread. */
switch (ivl_process_type(net)) {
case IVL_PR_INITIAL:
fprintf(vvp_out, " %%end;\n");
break;
case IVL_PR_ALWAYS:
2001-03-27 08:27:40 +02:00
fprintf(vvp_out, " %%jmp T_%d;\n", thread_count);
2001-03-19 02:20:46 +01:00
break;
}
/* Now write out the .thread directive that tells vvp where
the thread starts. */
2001-03-27 08:27:40 +02:00
fprintf(vvp_out, " .thread T_%d;\n", thread_count);
2001-03-19 02:20:46 +01:00
thread_count += 1;
return rc;
2001-03-19 02:20:46 +01:00
}
2001-04-02 04:28:12 +02:00
int draw_task_definition(ivl_scope_t scope)
{
int rc = 0;
ivl_statement_t def = ivl_scope_def(scope);
fprintf(vvp_out, "TD_%s ;\n", vvp_mangle_id(ivl_scope_name(scope)));
2001-04-02 04:28:12 +02:00
assert(def);
2001-04-18 07:12:03 +02:00
rc += show_statement(def, scope);
2001-04-02 04:28:12 +02:00
fprintf(vvp_out, " %%end;\n");
thread_count += 1;
return rc;
}
int draw_func_definition(ivl_scope_t scope)
{
int rc = 0;
ivl_statement_t def = ivl_scope_def(scope);
fprintf(vvp_out, "TD_%s ;\n", vvp_mangle_id(ivl_scope_name(scope)));
assert(def);
2001-04-18 07:12:03 +02:00
rc += show_statement(def, scope);
fprintf(vvp_out, " %%end;\n");
thread_count += 1;
return rc;
}
2001-03-19 02:20:46 +01:00
/*
* $Log: vvp_process.c,v $
* Revision 1.41 2001/08/16 03:45:17 steve
* statement ends after while loop labels.
*
* Revision 1.40 2001/07/28 01:18:07 steve
* Evaluate part selects when passed to system tasks.
*
2001-07-19 06:55:06 +02:00
* Revision 1.39 2001/07/19 04:55:06 steve
* Support calculated delays in vvp.tgt.
*
* Revision 1.38 2001/06/29 02:41:05 steve
* Handle null parameters to system tasks.
*
* Revision 1.37 2001/06/23 00:30:42 steve
* Handle short inputs to tasks. (Stephan Boettcher)
*
* Revision 1.36 2001/06/18 03:10:34 steve
* 1. Logic with more than 4 inputs
* 2. Id and name mangling
* 3. A memory leak in draw_net_in_scope()
* (Stephan Boettcher)
*
2001-05-24 06:31:00 +02:00
* Revision 1.35 2001/05/24 04:31:00 steve
* Attach noops to case labels.
*
2001-05-17 06:37:02 +02:00
* Revision 1.34 2001/05/17 04:37:02 steve
* Behavioral ternary operators for vvp.
*
* Revision 1.33 2001/05/10 00:26:53 steve
* VVP support for memories in expressions,
* including general support for thread bit
* vectors as system task parameters.
* (Stephan Boettcher)
*
* Revision 1.32 2001/05/08 23:59:33 steve
* Add ivl and vvp.tgt support for memories in
* expressions and l-values. (Stephan Boettcher)
*
* Revision 1.31 2001/05/03 04:55:28 steve
* Generate null statements for conditional labels.
*
2001-04-21 05:26:23 +02:00
* Revision 1.30 2001/04/21 03:26:23 steve
* Right shift by constant.
*
2001-04-21 02:55:46 +02:00
* Revision 1.29 2001/04/21 00:55:46 steve
* Generate code for disable.
*
2001-04-18 07:12:03 +02:00
* Revision 1.28 2001/04/18 05:12:03 steve
* Use the new %fork syntax.
*
* Revision 1.27 2001/04/15 02:58:11 steve
* vvp support for <= with internal delay.
*
* Revision 1.26 2001/04/06 02:28:03 steve
* Generate vvp code for functions with ports.
*
* Revision 1.25 2001/04/05 03:20:58 steve
* Generate vvp code for the repeat statement.
*
* Revision 1.24 2001/04/04 04:50:35 steve
* Support forever loops in the tgt-vvp target.
*
* Revision 1.23 2001/04/04 04:28:41 steve
* Fix broken look scanning down bits of number.
*
2001-04-04 06:14:09 +02:00
* Revision 1.22 2001/04/04 04:14:09 steve
* emit vpi parameters values as vectors.
*
2001-04-03 06:50:37 +02:00
* Revision 1.21 2001/04/03 04:50:37 steve
* Support non-blocking assignments.
*
2001-04-02 06:09:20 +02:00
* Revision 1.20 2001/04/02 04:09:20 steve
* thread bit allocation leak in assign.
*
2001-04-02 04:28:12 +02:00
* Revision 1.19 2001/04/02 02:28:13 steve
* Generate code for task calls.
*
* Revision 1.18 2001/04/02 00:27:53 steve
* Scopes and numbers as vpi_call parameters.
*
2001-04-01 08:49:04 +02:00
* Revision 1.17 2001/04/01 06:49:04 steve
* Generate code for while statements.
*
2001-04-01 06:34:59 +02:00
* Revision 1.16 2001/04/01 04:34:59 steve
* Generate code for casex and casez
*
2001-03-31 21:08:22 +02:00
* Revision 1.15 2001/03/31 19:08:22 steve
* Handle $time as system task parameter.
*
* Revision 1.14 2001/03/31 19:02:13 steve
* Clear results of condition expressions.
*
2001-03-31 19:36:38 +02:00
* Revision 1.13 2001/03/31 17:36:39 steve
* Generate vvp code for case statements.
*
* Revision 1.12 2001/03/30 05:49:53 steve
* Generate code for fork/join statements.
*
2001-03-29 05:47:38 +02:00
* Revision 1.11 2001/03/29 03:47:38 steve
* Behavioral trigger statements.
*
* Revision 1.10 2001/03/28 06:07:40 steve
* Add the ivl_event_t to ivl_target, and use that to generate
* .event statements in vvp way ahead of the thread that uses it.
*
2001-03-27 08:27:40 +02:00
* Revision 1.9 2001/03/27 06:27:41 steve
* Generate code for simple @ statements.
*
* Revision 1.8 2001/03/27 03:31:07 steve
* Support error code from target_t::end_design method.
*
* Revision 1.7 2001/03/25 03:53:24 steve
* Skip true clause if condition ix 0, x or z
*
2001-03-25 05:24:10 +02:00
* Revision 1.6 2001/03/25 03:24:10 steve
* Draw signal inputs to system tasks.
*
2001-03-23 02:54:32 +01:00
* Revision 1.5 2001/03/23 01:54:32 steve
* assignments with non-trival r-values.
*
* Revision 1.4 2001/03/22 05:06:21 steve
* Geneate code for conditional statements.
*
* Revision 1.3 2001/03/21 01:49:43 steve
* Scan the scopes of a design, and draw behavioral
* blocking assignments of constants to vectors.
*
2001-03-20 02:44:13 +01:00
* Revision 1.2 2001/03/20 01:44:14 steve
* Put processes in the proper scope.
*
2001-03-19 02:20:46 +01:00
* Revision 1.1 2001/03/19 01:20:46 steve
* Add the tgt-vvp code generator target.
*
*/