iverilog/tgt-vvp/eval_real.c

590 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003-2009 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/*
* This file includes functions for evaluating REAL expressions.
*/
# include "vvp_priv.h"
# include <string.h>
# include <stdlib.h>
# include <math.h>
# include <assert.h>
static unsigned long word_alloc_mask = 0x0f;
int allocate_word()
{
int res = 4;
int max = IMM_WID;
2003-04-23 04:22:47 +02:00
while (res < max && (1U << res) & word_alloc_mask)
res += 1;
2003-04-23 04:22:47 +02:00
assert(res < max);
word_alloc_mask |= 1U << res;
return res;
}
void clr_word(int res)
{
int max = IMM_WID;
2003-04-23 04:22:47 +02:00
assert(res < max);
word_alloc_mask &= ~ (1U << res);
}
static int draw_binary_real(ivl_expr_t expr)
{
2003-05-25 04:50:08 +02:00
int l, r = -1;
switch (ivl_expr_opcode(expr)) {
case 'E':
case 'N':
case 'l':
case 'r':
case 'R':
case '&':
case '|':
case '^':
case 'A':
case 'O':
case 'X':
/* These should be caught in draw_eval_real(). */
assert(0);
}
l = draw_eval_real(ivl_expr_oper1(expr));
r = draw_eval_real(ivl_expr_oper2(expr));
switch (ivl_expr_opcode(expr)) {
case '+':
fprintf(vvp_out, " %%add/wr %d, %d;\n", l, r);
break;
case '-':
fprintf(vvp_out, " %%sub/wr %d, %d;\n", l, r);
break;
case '*':
fprintf(vvp_out, " %%mul/wr %d, %d;\n", l, r);
break;
case '/':
fprintf(vvp_out, " %%div/wr %d, %d;\n", l, r);
break;
2006-08-09 07:19:08 +02:00
case '%':
fprintf(vvp_out, " %%mod/wr %d, %d;\n", l, r);
break;
case 'p':
fprintf(vvp_out, " %%pow/wr %d, %d;\n", l, r);
break;
case 'm': { /* min(l,r) */
int lab_out = local_count++;
int lab_r = local_count++;
/* If r is NaN, the go out and accept l as result. */
fprintf(vvp_out, " %%cmp/wr %d, %d; Is NaN?\n", r, r);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 4;\n", thread_count,
lab_out);
/* If l is NaN, the go out and accept r as result. */
fprintf(vvp_out, " %%cmp/wr %d, %d; Is NaN?\n", l, l);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 4;\n", thread_count,
lab_r);
/* If l <= r then go out. */
fprintf(vvp_out, " %%cmp/wr %d, %d;\n", r, l);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 5;\n", thread_count,
lab_out);
/* At this point we know we want r as the result. */
fprintf(vvp_out, "T_%d.%d %%mov/wr %d, %d;\n", thread_count,
lab_r, l, r);
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_out);
break;
}
case 'M': { /* max(l,r) */
int lab_out = local_count++;
int lab_r = local_count++;
/* If r is NaN, the go out and accept l as result. */
fprintf(vvp_out, " %%cmp/wr %d, %d; Is NaN?\n", r, r);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 4;\n", thread_count,
lab_out);
/* If l is NaN, the go out and accept r as result. */
fprintf(vvp_out, " %%cmp/wr %d, %d; Is NaN?\n", l, l);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 4;\n", thread_count,
lab_r);
/* if l >= r then go out. */
fprintf(vvp_out, " %%cmp/wr %d, %d;\n", l, r);
fprintf(vvp_out, " %%jmp/0xz T_%d.%d, 5;\n", thread_count,
lab_out);
fprintf(vvp_out, "T_%d.%d %%mov/wr %d, %d;\n", thread_count,
lab_r, l, r);
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_out);
break;
}
default:
fprintf(stderr, "XXXX draw_binary_real(%c)\n",
ivl_expr_opcode(expr));
assert(0);
}
2003-05-25 04:50:08 +02:00
if (r >= 0) clr_word(r);
return l;
}
static int draw_number_real(ivl_expr_t expr)
{
2003-12-19 02:27:10 +01:00
unsigned int idx;
int res = allocate_word();
const char*bits = ivl_expr_bits(expr);
unsigned wid = ivl_expr_width(expr);
unsigned long mant = 0, mask = -1UL;
int vexp = 0x1000;
/* If this is a negative number, then arrange for the 2's
complement to be calculated as we scan through the
value. Real values are sign-magnitude, and this negation
gets us a magnitide. */
int negate = 0;
int carry = 0;
if (ivl_expr_signed(expr) && (bits[wid-1] == '1')) {
negate = 1;
carry = 1;
}
for (idx = 0 ; idx < wid && idx < IMM_WID ; idx += 1) {
mask <<= 1;
int cur_bit = bits[idx] == '1'? 1 : 0;
if (negate) {
cur_bit ^= 1;
cur_bit += carry;
carry = (cur_bit >> 1) & 1;
cur_bit &= 1;
}
if (cur_bit) mant |= 1 << idx;
}
for ( ; idx < wid ; idx += 1) {
if (ivl_expr_signed(expr) && (bits[idx] == bits[IMM_WID-1]))
continue;
if (bits[idx] == '0')
continue;
fprintf(stderr, "internal error: mantissa doesn't fit!\n");
assert(0);
}
/* If required, add in a sign bit. */
if (negate)
vexp |= 0x4000;
fprintf(vvp_out, " %%loadi/wr %d, %lu, %d; load(num)= %c%lu (wid=%u)\n",
res, mant, vexp, (vexp&0x4000)? '-' : '+', mant, wid);
return res;
}
static int draw_realnum_real(ivl_expr_t expr)
{
int res = allocate_word();
double value = ivl_expr_dvalue(expr);
double fract;
2003-01-28 05:15:50 +01:00
int expo, vexp;
unsigned long mant;
int sign = 0;
2007-06-12 04:36:58 +02:00
/* Handle the special case that the value is +-inf. */
if (isinf(value)) {
if (value > 0)
fprintf(vvp_out, " %%loadi/wr %d, 0, %d; load=+inf\n",
2007-06-12 04:36:58 +02:00
res, 0x3fff);
else
fprintf(vvp_out, " %%loadi/wr %d, 0, %d; load=-inf\n",
2007-06-12 04:36:58 +02:00
res, 0x7fff);
return res;
}
/* Handle the special case that the value is NaN. */
if (value != value) {
fprintf(vvp_out, " %%loadi/wr %d, 1, %d; load=NaN\n",
res, 0x3fff);
return res;
}
2007-06-12 04:36:58 +02:00
if (value < 0) {
2003-01-28 05:15:50 +01:00
sign = 0x4000;
value *= -1;
}
2003-01-28 05:15:50 +01:00
fract = frexp(value, &expo);
fract = ldexp(fract, 31);
mant = fract;
2003-01-28 05:15:50 +01:00
expo -= 31;
2003-01-28 05:15:50 +01:00
vexp = expo + 0x1000;
assert(vexp >= 0);
assert(vexp < 0x2000);
vexp += sign;
fprintf(vvp_out, " %%loadi/wr %d, %lu, %d; load=%#g\n",
res, mant, vexp, ivl_expr_dvalue(expr));
2003-01-28 05:15:50 +01:00
2003-03-08 02:04:01 +01:00
/* Capture the residual bits, if there are any. Note that an
IEEE754 mantissa has 52 bits, 31 of which were accounted
for already. */
2003-01-28 05:15:50 +01:00
fract -= floor(fract);
2003-03-08 02:04:01 +01:00
fract = ldexp(fract, 22);
2003-01-28 05:15:50 +01:00
mant = fract;
2003-03-08 02:04:01 +01:00
expo -= 22;
2003-01-28 05:15:50 +01:00
vexp = expo + 0x1000;
assert(vexp >= 0);
assert(vexp < 0x2000);
vexp += sign;
if (mant != 0) {
int tmp_word = allocate_word();
fprintf(vvp_out, " %%loadi/wr %d, %lu, %d; load=%#g\n",
tmp_word, mant, vexp, ivl_expr_dvalue(expr));
2003-01-28 05:15:50 +01:00
fprintf(vvp_out, " %%add/wr %d, %d;\n", res, tmp_word);
clr_word(tmp_word);
}
return res;
}
static int draw_sfunc_real(ivl_expr_t expr)
{
struct vector_info sv;
int res;
const char*sign_flag = "";
switch (ivl_expr_value(expr)) {
case IVL_VT_REAL:
if (ivl_expr_parms(expr) == 0) {
res = allocate_word();
fprintf(vvp_out, " %%vpi_func/r %u %u \"%s\", %d;\n",
ivl_file_table_index(ivl_expr_file(expr)),
ivl_expr_lineno(expr), ivl_expr_name(expr), res);
} else {
res = draw_vpi_rfunc_call(expr);
}
break;
case IVL_VT_VECTOR:
/* If the value of the sfunc is a vector, then evaluate
it as a vector, then convert the result to a real
(via an index register) for the result. */
sv = draw_eval_expr(expr, 0);
clr_vector(sv);
if (ivl_expr_signed(expr))
sign_flag = "/s";
res = allocate_word();
fprintf(vvp_out, " %%ix/get%s %d, %u, %u;\n",
sign_flag, res, sv.base, sv.wid);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
break;
default:
assert(0);
res = -1;
}
return res;
}
/*
* The real value of a signal is the integer value of a signal
* converted to real.
*/
static int draw_signal_real_logic(ivl_expr_t expr)
{
int res = allocate_word();
struct vector_info sv = draw_eval_expr(expr, 0);
const char*sign_flag = ivl_expr_signed(expr)? "/s" : "";
fprintf(vvp_out, " %%ix/get%s %d, %u, %u; logic signal as real\n",
sign_flag, res, sv.base, sv.wid);
clr_vector(sv);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
return res;
}
static int draw_signal_real_real(ivl_expr_t expr)
2005-07-07 18:22:49 +02:00
{
ivl_signal_t sig = ivl_expr_signal(expr);
2005-07-07 18:22:49 +02:00
int res = allocate_word();
if (ivl_signal_dimensions(sig) == 0) {
fprintf(vvp_out, " %%load/wr %d, v%p_0;\n", res, sig);
return res;
}
2005-07-07 18:22:49 +02:00
ivl_expr_t word_ex = ivl_expr_oper1(expr);
int word_ix = allocate_word();
draw_eval_expr_into_integer(word_ex, word_ix);
fprintf(vvp_out, " %%load/ar %d, v%p, %d;\n", res, sig, word_ix);
clr_word(word_ix);
2005-07-07 18:22:49 +02:00
return res;
}
static int draw_signal_real(ivl_expr_t expr)
2005-07-07 18:22:49 +02:00
{
ivl_signal_t sig = ivl_expr_signal(expr);
2005-07-07 18:22:49 +02:00
switch (ivl_signal_data_type(sig)) {
case IVL_VT_LOGIC:
return draw_signal_real_logic(expr);
2005-07-07 18:22:49 +02:00
case IVL_VT_REAL:
return draw_signal_real_real(expr);
2005-07-07 18:22:49 +02:00
default:
fprintf(stderr, "internal error: signal_data_type=%d\n",
ivl_signal_data_type(sig));
assert(0);
return -1;
}
}
static int draw_ternary_real(ivl_expr_t expr)
{
ivl_expr_t cond = ivl_expr_oper1(expr);
ivl_expr_t true_ex = ivl_expr_oper2(expr);
ivl_expr_t false_ex = ivl_expr_oper3(expr);
struct vector_info tst;
unsigned lab_true = local_count++;
unsigned lab_false = local_count++;
unsigned lab_out = local_count++;
int tru, fal;
int res = allocate_word();
tst = draw_eval_expr(cond, STUFF_OK_XZ|STUFF_OK_RO);
if ((tst.base >= 4) && (tst.wid > 1)) {
struct vector_info tmp;
fprintf(vvp_out, " %%or/r %u, %u, %u;\n",
tst.base, tst.base, tst.wid);
tmp = tst;
tmp.base += 1;
tmp.wid -= 1;
clr_vector(tmp);
tst.wid = 1;
}
fprintf(vvp_out, " %%jmp/0 T_%d.%d, %u;\n",
thread_count, lab_true, tst.base);
tru = draw_eval_real(true_ex);
fprintf(vvp_out, " %%mov/wr %d, %d;\n", res, tru);
fprintf(vvp_out, " %%jmp/1 T_%d.%d, %u; End of true expr.\n",
thread_count, lab_out, tst.base);
clr_word(tru);
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_true);
fal = draw_eval_real(false_ex);
fprintf(vvp_out, " %%jmp/0 T_%d.%d, %u; End of false expr.\n",
thread_count, lab_false, tst.base);
fprintf(vvp_out, " %%blend/wr %d, %d;\n", res, fal);
fprintf(vvp_out, " %%jmp T_%d.%d; End of blend\n",
thread_count, lab_out);
fprintf(vvp_out, "T_%d.%d ; Move false result.\n",
thread_count, lab_false);
fprintf(vvp_out, " %%mov/wr %d, %d;\n", res, fal);
clr_word(fal);
/* This is the out label. */
fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_out);
clr_vector(tst);
return res;
}
static int draw_unary_real(ivl_expr_t expr)
{
ivl_expr_t sube;
int sub;
/* If the opcode is a ~ then the sub expression must not be a
* real expression, so use vector evaluation and then convert
* that result to a real value. */
if (ivl_expr_opcode(expr) == '~') {
struct vector_info vi;
int res;
const char*sign_flag;
vi = draw_eval_expr(expr, STUFF_OK_XZ);
res = allocate_word();
sign_flag = ivl_expr_signed(expr)? "/s" : "";
fprintf(vvp_out, " %%ix/get%s %d, %u, %u;\n",
sign_flag, res, vi.base, vi.wid);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
clr_vector(vi);
return res;
}
if (ivl_expr_opcode(expr) == '!') {
struct vector_info vi;
int res;
const char*sign_flag;
vi = draw_eval_expr(expr, STUFF_OK_XZ);
res = allocate_word();
sign_flag = ivl_expr_signed(expr)? "/s" : "";
fprintf(vvp_out, " %%ix/get%s %d, %u, %u;\n",
sign_flag, res, vi.base, vi.wid);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
clr_vector(vi);
return res;
}
sube = ivl_expr_oper1(expr);
sub = draw_eval_real(sube);
if (ivl_expr_opcode(expr) == '+')
return sub;
if (ivl_expr_opcode(expr) == '-') {
int res = allocate_word();
fprintf(vvp_out, " %%loadi/wr %d, 0, 0; load 0.0\n", res);
fprintf(vvp_out, " %%sub/wr %d, %d;\n", res, sub);
clr_word(sub);
return res;
}
if (ivl_expr_opcode(expr) == 'm') { /* abs(sube) */
fprintf(vvp_out, " %%abs/wr %d, %d;\n", sub, sub);
return sub;
}
fprintf(vvp_out, "; XXXX unary (%c) on sube in %d\n",
ivl_expr_opcode(expr), sub);
fprintf(stderr, "XXXX evaluate unary (%c) on sube in %d\n",
ivl_expr_opcode(expr), sub);
return 0;
}
int draw_eval_real(ivl_expr_t expr)
{
int res = 0;
/* If this expression/sub-expression is not real then we need
* to evaluate it as a bit value and then convert the bit based
* result to a real value. This is required to get integer
* division to work correctly. */
if (ivl_expr_value(expr) != IVL_VT_REAL) {
struct vector_info vi;
int res;
const char*sign_flag;
vi = draw_eval_expr(expr, STUFF_OK_XZ);
res = allocate_word();
sign_flag = ivl_expr_signed(expr)? "/s" : "";
fprintf(vvp_out, " %%ix/get%s %d, %u, %u;\n", sign_flag, res,
vi.base, vi.wid);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
clr_vector(vi);
return res;
}
switch (ivl_expr_type(expr)) {
case IVL_EX_BINARY:
res = draw_binary_real(expr);
break;
case IVL_EX_NUMBER:
res = draw_number_real(expr);
break;
case IVL_EX_REALNUM:
res = draw_realnum_real(expr);
break;
case IVL_EX_SFUNC:
res = draw_sfunc_real(expr);
break;
case IVL_EX_SIGNAL:
res = draw_signal_real(expr);
break;
case IVL_EX_TERNARY:
res = draw_ternary_real(expr);
break;
2005-07-13 06:52:31 +02:00
case IVL_EX_UFUNC:
res = draw_ufunc_real(expr);
2005-07-13 06:52:31 +02:00
break;
case IVL_EX_UNARY:
res = draw_unary_real(expr);
break;
default:
if (ivl_expr_value(expr) == IVL_VT_VECTOR) {
struct vector_info sv = draw_eval_expr(expr, 0);
const char*sign_flag = ivl_expr_signed(expr)? "/s" : "";
clr_vector(sv);
res = allocate_word();
fprintf(vvp_out, " %%ix/get%s %d, %u, %u;\n",
sign_flag, res, sv.base, sv.wid);
fprintf(vvp_out, " %%cvt/ri %d, %d;\n", res, res);
} else {
fprintf(stderr, "XXXX Evaluate real expression (%d)\n",
ivl_expr_type(expr));
fprintf(vvp_out, " ; XXXX Evaluate real expression (%d)\n",
ivl_expr_type(expr));
return 0;
}
break;
}
return res;
}