OpenSTA/graph/DelayNormal1.cc

432 lines
8.0 KiB
C++
Raw Normal View History

2019-03-22 00:19:16 +01:00
// OpenSTA, Static Timing Analyzer
2020-03-07 03:50:37 +01:00
// Copyright (c) 2020, Parallax Software, Inc.
2019-03-22 00:19:16 +01:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
2020-04-05 23:53:44 +02:00
#include "Delay.hh"
2020-04-05 20:35:51 +02:00
2019-03-22 00:19:16 +01:00
#include <cmath> // sqrt
2020-04-05 20:35:51 +02:00
2020-04-05 23:53:44 +02:00
#include "StaConfig.hh"
#include "Error.hh"
#include "StringUtil.hh"
#include "Fuzzy.hh"
#include "Units.hh"
#include "StaState.hh"
2020-07-03 19:16:10 +02:00
// temporary hack
#include "Sta.hh"
2019-03-22 00:19:16 +01:00
2020-07-04 03:19:26 +02:00
// SSTA compilation.
#if (SSTA == 1)
2019-03-22 00:19:16 +01:00
namespace sta {
inline float
square(float x)
{
return x * x;
}
static Delay delay_init_values[MinMax::index_count];
void
initDelayConstants()
{
delay_init_values[MinMax::minIndex()] = MinMax::min()->initValue();
delay_init_values[MinMax::maxIndex()] = MinMax::max()->initValue();
}
const Delay &
delayInitValue(const MinMax *min_max)
{
return delay_init_values[min_max->index()];
}
Delay::Delay() :
mean_(0.0),
2019-04-29 17:39:05 +02:00
sigma2_(0.0)
2019-03-22 00:19:16 +01:00
{
}
Delay::Delay(float mean) :
mean_(mean),
2019-04-29 17:39:05 +02:00
sigma2_(0.0)
2019-03-22 00:19:16 +01:00
{
}
Delay::Delay(float mean,
float sigma2) :
mean_(mean),
2019-04-29 17:39:05 +02:00
sigma2_(sigma2)
2019-03-22 00:19:16 +01:00
{
}
float
Delay::sigma() const
{
if (sigma2_ < 0.0)
// Sigma is negative for crpr to offset sigmas in the common
// clock path.
return -sqrt(-sigma2_);
else
return sqrt(sigma2_);
}
float
Delay::sigma2() const
{
return sigma2_;
}
void
Delay::operator=(const Delay &delay)
{
mean_ = delay.mean_;
sigma2_ = delay.sigma2_;
}
void
Delay::operator=(float delay)
{
mean_ = delay;
sigma2_ = 0.0;
}
void
Delay::operator+=(const Delay &delay)
{
mean_ += delay.mean_;
sigma2_ += delay.sigma2_;
}
void
Delay::operator+=(float delay)
{
mean_ += delay;
}
Delay
Delay::operator+(const Delay &delay) const
{
return Delay(mean_ + delay.mean_,
sigma2_ + delay.sigma2_);
}
Delay
Delay::operator+(float delay) const
{
return Delay(mean_ + delay, sigma2_);
}
Delay
Delay::operator-(const Delay &delay) const
{
return Delay(mean_ - delay.mean_,
sigma2_ + delay.sigma2_);
}
Delay
Delay::operator-(float delay) const
{
return Delay(mean_ - delay, sigma2_);
}
Delay
Delay::operator-() const
{
return Delay(-mean_, sigma2_);
}
void
Delay::operator-=(float delay)
{
mean_ -= delay;
}
void
Delay::operator-=(const Delay &delay)
{
mean_ -= delay.mean_;
2019-04-29 17:39:05 +02:00
sigma2_ += delay.sigma2_;
2019-03-22 00:19:16 +01:00
}
bool
Delay::operator==(const Delay &delay) const
{
2020-07-12 01:24:48 +02:00
return delayEqual(*this, delay);
2019-03-22 00:19:16 +01:00
}
////////////////////////////////////////////////////////////////
Delay
makeDelay(float delay,
float sigma,
float)
{
return Delay(delay, square(sigma));
}
Delay
makeDelay2(float delay,
float sigma2,
float )
{
return Delay(delay, sigma2);
}
bool
delayIsInitValue(const Delay &delay,
const MinMax *min_max)
{
return fuzzyEqual(delay.mean(), min_max->initValue())
&& delay.sigma2() == 0.0;
}
bool
2020-07-12 01:24:48 +02:00
delayZero(const Delay &delay)
2019-03-22 00:19:16 +01:00
{
return fuzzyZero(delay.mean())
&& fuzzyZero(delay.sigma2());
}
2020-03-30 00:47:31 +02:00
bool
2020-07-12 01:24:48 +02:00
delayInf(const Delay &delay)
2020-03-30 00:47:31 +02:00
{
return fuzzyInf(delay.mean());
}
2019-03-22 00:19:16 +01:00
bool
2020-07-12 01:24:48 +02:00
delayEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2)
{
return fuzzyEqual(delay1.mean(), delay2.mean())
&& fuzzyEqual(delay1.sigma2(), delay2.sigma2());
}
bool
2020-07-12 01:24:48 +02:00
delayLess(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyLess(delayAsFloat(delay1, EarlyLate::early(), sta),
delayAsFloat(delay2, EarlyLate::early(), sta));
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayLess(const Delay &delay1,
2019-03-22 00:19:16 +01:00
float delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyLess(delayAsFloat(delay1, EarlyLate::early(), sta),
delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayLess(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return delayLess(delay1, delay2);
else
return delayGreater(delay1, delay2);
}
bool
delayLessEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyLessEqual(delayAsFloat(delay1, EarlyLate::early(), sta),
delayAsFloat(delay2, EarlyLate::early(), sta));
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayLessEqual(const Delay &delay1,
2020-07-03 19:16:10 +02:00
float delay2)
2019-03-22 00:19:16 +01:00
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyLessEqual(delayAsFloat(delay1, EarlyLate::early(), sta),
delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayLessEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
2020-07-12 01:24:48 +02:00
return delayLessEqual(delay1, delay2);
2019-03-22 00:19:16 +01:00
else
2020-07-12 01:24:48 +02:00
return delayGreaterEqual(delay1, delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreater(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyGreater(delayAsFloat(delay1, EarlyLate::late(), sta),
delayAsFloat(delay2, EarlyLate::late(), sta));
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreater(const Delay &delay1,
2019-03-22 00:19:16 +01:00
float delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyGreater(delayAsFloat(delay1, EarlyLate::late(), sta),
delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreaterEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyGreaterEqual(delayAsFloat(delay1, EarlyLate::late(), sta),
delayAsFloat(delay2, EarlyLate::late(), sta));
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreaterEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
float delay2)
{
2020-07-03 19:16:10 +02:00
Sta *sta = Sta::sta();
return fuzzyGreaterEqual(delayAsFloat(delay1, EarlyLate::late(), sta),
delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreater(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
2020-07-12 01:24:48 +02:00
return delayGreater(delay1, delay2);
2019-03-22 00:19:16 +01:00
else
2020-07-12 01:24:48 +02:00
return delayLess(delay1, delay2);
2019-03-22 00:19:16 +01:00
}
bool
2020-07-12 01:24:48 +02:00
delayGreaterEqual(const Delay &delay1,
2019-03-22 00:19:16 +01:00
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
2020-07-12 01:24:48 +02:00
return delayGreaterEqual(delay1, delay2);
2019-03-22 00:19:16 +01:00
else
2020-07-12 01:24:48 +02:00
return delayLessEqual(delay1, delay2);
2019-03-22 00:19:16 +01:00
}
float
delayAsFloat(const Delay &delay,
const EarlyLate *early_late,
2019-06-01 17:07:38 +02:00
const StaState *sta)
2019-03-22 00:19:16 +01:00
{
2019-06-01 17:07:38 +02:00
if (sta->pocvEnabled()) {
if (early_late == EarlyLate::early())
return delay.mean() - delay.sigma() * sta->sigmaFactor();
else if (early_late == EarlyLate::late())
return delay.mean() + delay.sigma() * sta->sigmaFactor();
else
internalError("unknown early/late value.");
}
2019-03-22 00:19:16 +01:00
else
2019-06-01 17:07:38 +02:00
return delay.mean();
2019-03-22 00:19:16 +01:00
}
float
delaySigma2(const Delay &delay,
const EarlyLate *)
{
return delay.sigma2();
}
const char *
delayAsString(const Delay &delay,
const StaState *sta)
{
return delayAsString(delay, sta, sta->units()->timeUnit()->digits());
}
const char *
delayAsString(const Delay &delay,
const StaState *sta,
int digits)
{
const Unit *unit = sta->units()->timeUnit();
if (sta->pocvEnabled()) {
float sigma = delay.sigma();
2019-12-24 02:26:25 +01:00
return stringPrintTmp("%s[%s]",
2019-03-22 00:19:16 +01:00
unit->asString(delay.mean(), digits),
unit->asString(sigma, digits));
}
else
return unit->asString(delay.mean(), digits);
}
const char *
delayAsString(const Delay &delay,
const EarlyLate *early_late,
const StaState *sta,
int digits)
{
2019-06-01 17:07:38 +02:00
float mean_sigma = delayAsFloat(delay, early_late, sta);
2019-03-22 00:19:16 +01:00
return sta->units()->timeUnit()->asString(mean_sigma, digits);
}
2020-05-31 03:09:14 +02:00
Delay
delayRemove(const Delay &delay1,
const Delay &delay2)
{
return Delay(delay1.mean() - delay2.mean(),
delay1.sigma2() - delay2.sigma2());
}
float
delayRatio(const Delay &delay1,
const Delay &delay2)
{
return delay1.mean() / delay2.mean();
}
Delay
operator+(float delay1,
const Delay &delay2)
{
return Delay(delay1 + delay2.mean(),
delay2.sigma2());
}
Delay
operator/(float delay1,
const Delay &delay2)
{
return Delay(delay1 / delay2.mean(),
delay2.sigma2());
}
Delay
operator*(const Delay &delay1,
float delay2)
{
return Delay(delay1.mean() * delay2,
delay1.sigma2() * delay2 * delay2);
}
2019-03-22 00:19:16 +01:00
} // namespace
2020-02-16 01:13:16 +01:00
#endif // (SSTA == 1)