DelayNormal1

This commit is contained in:
James Cherry 2019-03-21 16:19:16 -07:00
parent df87b6afd2
commit 892324dfd9
7 changed files with 583 additions and 2 deletions

View File

@ -70,6 +70,7 @@ set(STA_SOURCE
dcalc/UnitDelayCalc.cc
graph/DelayFloat.cc
graph/DelayNormal1.cc
graph/DelayNormal2.cc
graph/Graph.cc
graph/GraphCmp.cc
@ -227,6 +228,7 @@ set(STA_HEADERS
graph/Delay.hh
graph/DelayFloat.hh
graph/DelayNormal1.hh
graph/DelayNormal2.hh
graph/Graph.hh
graph/GraphClass.hh

Binary file not shown.

Binary file not shown.

View File

@ -19,7 +19,10 @@
#ifndef STA_DELAY_H
#define STA_DELAY_H
#if SSTA
#if (SSTA == 1)
// Delays are Normal PDFs with early/late sigma.
#include "DelayNormal1.hh"
#elif (SSTA == 2)
// Delays are Normal PDFs with early/late sigma.
#include "DelayNormal2.hh"
#else

419
graph/DelayNormal1.cc Normal file
View File

@ -0,0 +1,419 @@
// OpenSTA, Static Timing Analyzer
// Copyright (c) 2019, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "StaConfig.hh"
#include <cmath> // sqrt
#include "Machine.hh"
#include "Error.hh"
#include "StringUtil.hh"
#include "Fuzzy.hh"
#include "Units.hh"
#include "StaState.hh"
#include "Delay.hh"
// SSTA compilation.
#if (SSTA == 1)
namespace sta {
inline float
square(float x)
{
return x * x;
}
static Delay delay_init_values[MinMax::index_count];
void
initDelayConstants()
{
delay_init_values[MinMax::minIndex()] = MinMax::min()->initValue();
delay_init_values[MinMax::maxIndex()] = MinMax::max()->initValue();
}
const Delay &
delayInitValue(const MinMax *min_max)
{
return delay_init_values[min_max->index()];
}
Delay::Delay() :
mean_(0.0),
sigma2_{0.0}
{
}
Delay::Delay(float mean) :
mean_(mean),
sigma2_{0.0}
{
}
Delay::Delay(float mean,
float sigma2) :
mean_(mean),
sigma2_{sigma2}
{
}
float
Delay::sigma() const
{
if (sigma2_ < 0.0)
// Sigma is negative for crpr to offset sigmas in the common
// clock path.
return -sqrt(-sigma2_);
else
return sqrt(sigma2_);
}
float
Delay::sigma2() const
{
return sigma2_;
}
void
Delay::operator=(const Delay &delay)
{
mean_ = delay.mean_;
sigma2_ = delay.sigma2_;
}
void
Delay::operator=(float delay)
{
mean_ = delay;
sigma2_ = 0.0;
}
void
Delay::operator+=(const Delay &delay)
{
mean_ += delay.mean_;
sigma2_ += delay.sigma2_;
}
void
Delay::operator+=(float delay)
{
mean_ += delay;
}
Delay
Delay::operator+(const Delay &delay) const
{
return Delay(mean_ + delay.mean_,
sigma2_ + delay.sigma2_);
}
Delay
Delay::operator+(float delay) const
{
return Delay(mean_ + delay, sigma2_);
}
Delay
Delay::operator-(const Delay &delay) const
{
return Delay(mean_ - delay.mean_,
sigma2_ + delay.sigma2_);
}
Delay
Delay::operator-(float delay) const
{
return Delay(mean_ - delay, sigma2_);
}
Delay
Delay::operator-() const
{
return Delay(-mean_, sigma2_);
}
void
Delay::operator-=(float delay)
{
mean_ -= delay;
}
void
Delay::operator-=(const Delay &delay)
{
mean_ -= delay.mean_;
sigma2_ -= delay.sigma2_;
}
bool
Delay::operator==(const Delay &delay) const
{
return mean_ == delay.mean_
&& sigma2_ == delay.sigma2_;
}
bool
Delay::operator>(const Delay &delay) const
{
return mean_ > delay.mean_;
}
bool
Delay::operator>=(const Delay &delay) const
{
return mean_ >= delay.mean_;
}
bool
Delay::operator<(const Delay &delay) const
{
return mean_ < delay.mean_;
}
bool
Delay::operator<=(const Delay &delay) const
{
return mean_ <= delay.mean_;
}
////////////////////////////////////////////////////////////////
Delay
makeDelay(float delay,
float sigma,
float)
{
return Delay(delay, square(sigma));
}
Delay
makeDelay2(float delay,
float sigma2,
float )
{
return Delay(delay, sigma2);
}
bool
delayIsInitValue(const Delay &delay,
const MinMax *min_max)
{
return fuzzyEqual(delay.mean(), min_max->initValue())
&& delay.sigma2() == 0.0;
}
bool
fuzzyZero(const Delay &delay)
{
return fuzzyZero(delay.mean())
&& fuzzyZero(delay.sigma2());
}
bool
fuzzyEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyEqual(delay1.mean(), delay2.mean())
&& fuzzyEqual(delay1.sigma2(), delay2.sigma2());
}
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2)
{
return fuzzyLess(delay1.mean(), delay2.mean());
}
bool
fuzzyLess(const Delay &delay1,
float delay2)
{
return fuzzyLess(delay1.mean(), delay2);
}
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyLessEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyLessEqual(const Delay &delay1,
float delay2)
{
return fuzzyLessEqual(delay1.mean(), delay2);
}
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyLessEqual(delay1.mean(), delay2.mean());
else
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2)
{
return fuzzyGreater(delay1.mean(), delay2.mean());
}
bool
fuzzyGreater(const Delay &delay1,
float delay2)
{
return fuzzyGreater(delay1.mean(), delay2);
}
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyGreaterEqual(const Delay &delay1,
float delay2)
{
return fuzzyGreaterEqual(delay1.mean(), delay2);
}
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyGreater(delay1.mean(), delay2.mean());
else
return fuzzyLess(delay1.mean(), delay2.mean());
}
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
else
return fuzzyLessEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyLess(delay1.mean(), delay2.mean());
else
return fuzzyGreater(delay1.mean(), delay2.mean());
}
Delay
operator+(float delay1,
const Delay &delay2)
{
return Delay(delay1 + delay2.mean(),
delay2.sigma2());
}
Delay
operator/(float delay1,
const Delay &delay2)
{
return Delay(delay1 / delay2.mean(),
delay2.sigma2());
}
Delay
operator*(const Delay &delay1,
float scale)
{
float scale2 = square(scale);
return Delay(delay1.mean() * scale,
delay1.sigma2() * scale2);
}
float
delayRatio(const Delay &delay1,
const Delay &delay2)
{
return delay1.mean() / delay2.mean();
}
float
delayAsFloat(const Delay &delay,
const EarlyLate *early_late,
float sigma_factor)
{
if (early_late == EarlyLate::early())
return delay.mean() - delay.sigma() * sigma_factor;
else if (early_late == EarlyLate::late())
return delay.mean() + delay.sigma() * sigma_factor;
else
internalError("unknown early/late value.");
}
float
delaySigma2(const Delay &delay,
const EarlyLate *)
{
return delay.sigma2();
}
const char *
delayAsString(const Delay &delay,
const StaState *sta)
{
return delayAsString(delay, sta, sta->units()->timeUnit()->digits());
}
const char *
delayAsString(const Delay &delay,
const StaState *sta,
int digits)
{
const Unit *unit = sta->units()->timeUnit();
if (sta->pocvEnabled()) {
float sigma = delay.sigma();
return stringPrintTmp("%s|%s",
unit->asString(delay.mean(), digits),
unit->asString(sigma, digits));
}
else
return unit->asString(delay.mean(), digits);
}
const char *
delayAsString(const Delay &delay,
const EarlyLate *early_late,
const StaState *sta,
int digits)
{
float mean_sigma = delayAsFloat(delay, early_late, sta->sigmaFactor());
return sta->units()->timeUnit()->asString(mean_sigma, digits);
}
} // namespace
#endif

157
graph/DelayNormal1.hh Normal file
View File

@ -0,0 +1,157 @@
// OpenSTA, Static Timing Analyzer
// Copyright (c) 2019, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#ifndef STA_DELAY_NORMAL1_H
#define STA_DELAY_NORMAL1_H
#include "MinMax.hh"
namespace sta {
class Delay;
class StaState;
// Normal distribution with std deviation.
class Delay
{
public:
Delay();
Delay(float mean);
Delay(float mean,
float sigma2);
float mean() const { return mean_; }
float sigma() const;
// sigma^2
float sigma2() const;
void operator=(const Delay &delay);
void operator=(float delay);
void operator+=(const Delay &delay);
void operator+=(float delay);
Delay operator+(const Delay &delay) const;
Delay operator+(float delay) const;
Delay operator-(const Delay &delay) const;
Delay operator-(float delay) const;
Delay operator-() const;
void operator-=(float delay);
void operator-=(const Delay &delay);
bool operator==(const Delay &delay) const;
bool operator>(const Delay &delay) const;
bool operator>=(const Delay &delay) const;
bool operator<(const Delay &delay) const;
bool operator<=(const Delay &delay) const;
private:
float mean_;
// Sigma^2
float sigma2_;
};
const Delay delay_zero(0.0);
void
initDelayConstants();
Delay
makeDelay(float delay,
float sigma_early,
float sigma_late);
Delay
makeDelay2(float delay,
// sigma^2
float sigma_early,
float sigma_late);
inline float
delayAsFloat(const Delay &delay) { return delay.mean(); }
// Most non-operator functions on Delay are not defined as member
// functions so they can be defined on floats, where there is no class
// to define them.
Delay operator+(float delay1,
const Delay &delay2);
// Used for parallel gate delay calc.
Delay operator/(float delay1,
const Delay &delay2);
// Used for parallel gate delay calc.
Delay operator*(const Delay &delay1,
float delay2);
// mean late+/early- sigma
float
delayAsFloat(const Delay &delay,
const EarlyLate *early_late,
float sigma_factor);
float
delaySigma2(const Delay &delay,
const EarlyLate *early_late);
const char *
delayAsString(const Delay &delay,
const StaState *sta);
const char *
delayAsString(const Delay &delay,
const StaState *sta,
int digits);
const char *
delayAsString(const Delay &delay,
const EarlyLate *early_late,
const StaState *sta,
int digits);
const Delay &
delayInitValue(const MinMax *min_max);
bool
delayIsInitValue(const Delay &delay,
const MinMax *min_max);
bool
fuzzyZero(const Delay &delay);
bool
fuzzyEqual(const Delay &delay1,
const Delay &delay2);
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2);
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max);
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2);
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max);
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2);
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2);
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max);
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max);
float
delayRatio(const Delay &delay1,
const Delay &delay2);
} // namespace
#endif

View File

@ -25,7 +25,7 @@
#include "Delay.hh"
// SSTA compilation.
#if SSTA
#if (SSTA == 2)
namespace sta {