OpenSTA/search/Bfs.cc

430 lines
10 KiB
C++
Raw Normal View History

2018-09-28 17:54:21 +02:00
// OpenSTA, Static Timing Analyzer
// Copyright (c) 2024, Parallax Software, Inc.
2018-09-28 17:54:21 +02:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2018-09-28 17:54:21 +02:00
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
2018-09-28 17:54:21 +02:00
2020-04-05 23:53:44 +02:00
#include "Bfs.hh"
2020-04-05 20:35:51 +02:00
2020-04-05 23:53:44 +02:00
#include "Report.hh"
#include "Debug.hh"
#include "Mutex.hh"
#include "DispatchQueue.hh"
#include "Network.hh"
#include "Graph.hh"
#include "Sdc.hh"
#include "Levelize.hh"
#include "SearchPred.hh"
2018-09-28 17:54:21 +02:00
namespace sta {
BfsIterator::BfsIterator(BfsIndex bfs_index,
Level level_min,
Level level_max,
SearchPred *search_pred,
StaState *sta) :
StaState(sta),
bfs_index_(bfs_index),
level_min_(level_min),
level_max_(level_max),
2019-03-13 01:25:53 +01:00
search_pred_(search_pred)
2018-09-28 17:54:21 +02:00
{
2019-03-13 01:25:53 +01:00
init();
2018-09-28 17:54:21 +02:00
}
void
BfsIterator::init()
{
first_level_ = level_max_;
last_level_ = level_min_;
ensureSize();
}
void
BfsIterator::ensureSize()
{
if (levelize_->levelized()) {
unsigned max_level_1 = levelize_->maxLevel() + 1;
if (queue_.size() < max_level_1)
queue_.resize(max_level_1);
}
}
BfsIterator::~BfsIterator()
{
}
void
BfsIterator::clear()
{
Level level = first_level_;
while (levelLessOrEqual(level, last_level_)) {
2019-03-13 01:25:53 +01:00
VertexSeq &level_vertices = queue_[level];
for (Vertex *vertex : level_vertices) {
2019-03-13 01:25:53 +01:00
if (vertex)
2018-09-28 17:54:21 +02:00
vertex->setBfsInQueue(bfs_index_, false);
}
2019-03-13 01:25:53 +01:00
level_vertices.clear();
2018-09-28 17:54:21 +02:00
incrLevel(level);
}
init();
}
void
BfsIterator::reportEntries(const Network *network)
{
Level level = first_level_;
while (levelLessOrEqual(level, last_level_)) {
2019-03-13 01:25:53 +01:00
VertexSeq &level_vertices = queue_[level];
if (!level_vertices.empty()) {
report_->reportLine("Level %d", level);
for (Vertex *vertex : level_vertices) {
2019-03-13 01:25:53 +01:00
if (vertex)
report_->reportLine(" %s", vertex->name(network));
2018-09-28 17:54:21 +02:00
}
}
incrLevel(level);
}
}
void
BfsIterator::deleteEntries(Level level)
{
2019-03-13 01:25:53 +01:00
VertexSeq &level_vertices = queue_[level];
for (Vertex *vertex : level_vertices) {
2019-03-13 01:25:53 +01:00
if (vertex)
2018-09-28 17:54:21 +02:00
vertex->setBfsInQueue(bfs_index_, false);
}
2019-03-13 01:25:53 +01:00
level_vertices.clear();
2018-09-28 17:54:21 +02:00
}
bool
BfsIterator::empty() const
{
return levelLess(last_level_, first_level_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex)
{
enqueueAdjacentVertices(vertex, search_pred_, level_max_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred)
{
enqueueAdjacentVertices(vertex, search_pred, level_max_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex,
Level to_level)
{
enqueueAdjacentVertices(vertex, search_pred_, to_level);
}
int
BfsIterator::visit(Level to_level,
VertexVisitor *visitor)
{
int visit_count = 0;
while (levelLessOrEqual(first_level_, last_level_)
&& levelLessOrEqual(first_level_, to_level)) {
2019-03-13 01:25:53 +01:00
VertexSeq &level_vertices = queue_[first_level_];
incrLevel(first_level_);
// Note that ArrivalVisitor::enqueueRefPinInputDelays may enqueue
// vertices at this level so range iteration fails if the vector grows.
while (!level_vertices.empty()) {
Vertex *vertex = level_vertices.back();
level_vertices.pop_back();
if (vertex) {
vertex->setBfsInQueue(bfs_index_, false);
visitor->visit(vertex);
visit_count++;
2018-09-28 17:54:21 +02:00
}
}
level_vertices.clear();
visitor->levelFinished();
2018-09-28 17:54:21 +02:00
}
return visit_count;
}
int
BfsIterator::visitParallel(Level to_level,
VertexVisitor *visitor)
{
size_t thread_count = thread_count_;
2018-09-28 17:54:21 +02:00
int visit_count = 0;
if (!empty()) {
if (thread_count == 1)
2018-09-28 17:54:21 +02:00
visit_count = visit(to_level, visitor);
else {
2019-11-11 16:48:27 +01:00
std::vector<VertexVisitor*> visitors;
for (int k = 0; k < thread_count_; k++)
2019-11-11 16:48:27 +01:00
visitors.push_back(visitor->copy());
while (levelLessOrEqual(first_level_, last_level_)
&& levelLessOrEqual(first_level_, to_level)) {
VertexSeq &level_vertices = queue_[first_level_];
incrLevel(first_level_);
2019-03-13 01:25:53 +01:00
if (!level_vertices.empty()) {
size_t vertex_count = level_vertices.size();
if (vertex_count < thread_count) {
for (Vertex *vertex : level_vertices) {
if (vertex) {
vertex->setBfsInQueue(bfs_index_, false);
visitor->visit(vertex);
}
}
}
else {
size_t from = 0;
size_t chunk_size = vertex_count / thread_count;
for (size_t k = 0; k < thread_count; k++) {
// Last thread gets the left overs.
size_t to = (k == thread_count - 1) ? vertex_count : from + chunk_size;
dispatch_queue_->dispatch( [&](int) {
for (size_t i = from; i < to; i++) {
Vertex *vertex = level_vertices[i];
if (vertex) {
vertex->setBfsInQueue(bfs_index_, false);
visitors[k]->visit(vertex);
}
}
});
from = to;
}
dispatch_queue_->finishTasks();
}
2019-09-07 21:37:05 +02:00
visitor->levelFinished();
2019-11-11 16:48:27 +01:00
level_vertices.clear();
2018-09-28 17:54:21 +02:00
}
}
2020-08-31 06:35:15 +02:00
for (VertexVisitor *visitor : visitors)
delete visitor;
2018-09-28 17:54:21 +02:00
}
}
return visit_count;
}
bool
BfsIterator::hasNext()
{
return hasNext(last_level_);
}
bool
BfsIterator::hasNext(Level to_level)
{
findNext(to_level);
return levelLessOrEqual(first_level_, last_level_)
2019-03-13 01:25:53 +01:00
&& !queue_[first_level_].empty();
2018-09-28 17:54:21 +02:00
}
Vertex *
BfsIterator::next()
{
2019-03-13 01:25:53 +01:00
VertexSeq &level_vertices = queue_[first_level_];
Vertex *vertex = level_vertices.back();
level_vertices.pop_back();
2018-09-28 17:54:21 +02:00
vertex->setBfsInQueue(bfs_index_, false);
return vertex;
}
void
BfsIterator::findNext(Level to_level)
{
while (levelLessOrEqual(first_level_, last_level_)
&& levelLessOrEqual(first_level_, to_level)
2019-03-13 01:25:53 +01:00
&& queue_[first_level_].empty())
2018-09-28 17:54:21 +02:00
incrLevel(first_level_);
}
void
BfsIterator::enqueue(Vertex *vertex)
{
2021-01-01 20:46:51 +01:00
debugPrint(debug_, "bfs", 2, "enqueue %s", vertex->name(sdc_network_));
2018-09-28 17:54:21 +02:00
if (!vertex->bfsInQueue(bfs_index_)) {
2019-03-13 01:25:53 +01:00
Level level = vertex->level();
LockGuard lock(queue_lock_);
2018-09-28 17:54:21 +02:00
if (!vertex->bfsInQueue(bfs_index_)) {
vertex->setBfsInQueue(bfs_index_, true);
2019-03-13 01:25:53 +01:00
queue_[level].push_back(vertex);
2018-09-28 17:54:21 +02:00
if (levelLess(last_level_, level))
last_level_ = level;
if (levelLess(level, first_level_))
first_level_ = level;
}
}
}
bool
BfsIterator::inQueue(Vertex *vertex)
{
// checkInQueue(vertex);
return vertex->bfsInQueue(bfs_index_);
}
void
BfsIterator::checkInQueue(Vertex *vertex)
{
Level level = vertex->level();
if (static_cast<Level>(queue_.size()) > level) {
for (Vertex *v : queue_[level]) {
2019-03-13 01:25:53 +01:00
if (v == vertex) {
2018-09-28 17:54:21 +02:00
if (vertex->bfsInQueue(bfs_index_))
return;
else
printf("extra %s\n", vertex->name(sdc_network_));
}
}
}
if (vertex->bfsInQueue(bfs_index_))
printf("missing %s\n", vertex->name(sdc_network_));
}
void
BfsIterator::deleteVertexBefore(Vertex *vertex)
{
remove(vertex);
}
2019-03-13 01:25:53 +01:00
// Remove by inserting null vertex pointer.
2018-09-28 17:54:21 +02:00
void
BfsIterator::remove(Vertex *vertex)
{
// If the iterator has not been inited the queue will be empty.
Level level = vertex->level();
if (vertex->bfsInQueue(bfs_index_)
&& static_cast<Level>(queue_.size()) > level) {
for (Vertex *&v : queue_[level]) {
2019-03-13 01:25:53 +01:00
if (v == vertex) {
v = nullptr;
2018-09-28 17:54:21 +02:00
vertex->setBfsInQueue(bfs_index_, false);
break;
}
}
}
}
////////////////////////////////////////////////////////////////
BfsFwdIterator::BfsFwdIterator(BfsIndex bfs_index,
SearchPred *search_pred,
StaState *sta) :
BfsIterator(bfs_index, 0, level_max, search_pred, sta)
2018-09-28 17:54:21 +02:00
{
}
// clear() without saving lists to list_free_.
BfsFwdIterator::~BfsFwdIterator()
{
for (Level level = first_level_; level <= last_level_; level++)
deleteEntries(level);
}
void
BfsFwdIterator::incrLevel(Level &level)
{
level++;
}
bool
BfsFwdIterator::levelLessOrEqual(Level level1,
Level level2) const
{
return level1 <= level2;
}
bool
BfsFwdIterator::levelLess(Level level1,
Level level2) const
{
return level1 < level2;
}
void
BfsFwdIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred,
Level to_level)
{
if (search_pred->searchFrom(vertex)) {
VertexOutEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
Vertex *to_vertex = edge->to(graph_);
if (to_vertex->level() <= to_level
&& search_pred->searchThru(edge)
&& search_pred->searchTo(to_vertex))
enqueue(to_vertex);
}
}
}
////////////////////////////////////////////////////////////////
BfsBkwdIterator::BfsBkwdIterator(BfsIndex bfs_index,
SearchPred *search_pred,
StaState *sta) :
BfsIterator(bfs_index, level_max, 0, search_pred, sta)
2018-09-28 17:54:21 +02:00
{
}
// clear() without saving lists to list_free_.
BfsBkwdIterator::~BfsBkwdIterator()
{
for (Level level = first_level_; level >= last_level_; level--)
deleteEntries(level);
}
void
BfsBkwdIterator::incrLevel(Level &level)
{
level--;
}
bool
BfsBkwdIterator::levelLessOrEqual(Level level1,
Level level2) const
{
return level1 >= level2;
}
bool
BfsBkwdIterator::levelLess(Level level1,
Level level2) const
{
return level1 > level2;
}
void
BfsBkwdIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred,
Level to_level)
{
if (search_pred->searchTo(vertex)) {
VertexInEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
Vertex *from_vertex = edge->from(graph_);
if (from_vertex->level() >= to_level
&& search_pred->searchFrom(from_vertex)
&& search_pred->searchThru(edge))
enqueue(from_vertex);
}
}
}
} // namespace