OpenRAM/technology/freepdk45/tech/tech.py

492 lines
18 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2023 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os
from openram import drc as d
#from drc.design_rules import design_rules
#from drc.module_type import module_type
#from drc.custom_cell_properties import cell_properties
#from drc.custom_layer_properties import layer_properties
"""
File containing the process technology parameters for FreePDK 45nm.
"""
###################################################
# Custom modules
###################################################
# This uses the default classes to instantiate module from
# '$OPENRAM_HOME/compiler/modules'.
# Using tech_modules['cellname'] you can override each class by providing a custom
# implementation in '$OPENRAM_TECHDIR/modules/'
# For example: tech_modules['contact'] = 'contact_freepdk45'
tech_modules = d.module_type()
###################################################
# Custom cell properties
###################################################
cell_properties = d.cell_properties()
###################################################
# Custom cell properties
###################################################
layer_properties = d.layer_properties()
###################################################
# GDS file info
###################################################
GDS = {}
# gds units
# From http://www.cnf.cornell.edu/cnf_spie9.html: "The first
#is the size of a database unit in user units. The second is the size
#of a database unit in meters. For example, if your library was
#created with the default units (user unit = 1 m and 1000 database
#units per user unit), then the first number would be 0.001 and the
#second number would be 10-9. Typically, the first number is less than
#1, since you use more than 1 database unit per user unit. To
#calculate the size of a user unit in meters, divide the second number
#by the first."
GDS["unit"] = (0.0005,1e-9)
# default label zoom
GDS["zoom"] = 0.05
###################################################
# Interconnect stacks
###################################################
poly_stack = ("poly", "contact", "m1")
active_stack = ("active", "contact", "m1")
m1_stack = ("m1", "via1", "m2")
m2_stack = ("m2", "via2", "m3")
m3_stack = ("m3", "via3", "m4")
# Added to support ROM generation
lef_rom_interconnect = ["m1", "m2", "m3", "m4", "m5"]
layer_indices = {"poly": 0,
"active": 0,
"m1": 1,
"m2": 2,
"m3": 3,
"m4": 4}
# The FEOL stacks get us up to m1
feol_stacks = [poly_stack,
active_stack]
# The BEOL stacks are m1 and up
beol_stacks = [m1_stack,
m2_stack,
m3_stack]
layer_stacks = feol_stacks + beol_stacks
preferred_directions = {"poly": "V",
"active": "V",
"m1": "H",
"m2": "V",
"m3": "H",
"m4": "V"}
###################################################
# Power grid
###################################################
# Use M3/M4
power_grid = m3_stack
###################################################
# GDS Layer Map
###################################################
# Create the GDS layer map using internal names
layer = {}
layer["active"] = (1, 0)
layer["pwell"] = (2, 0)
layer["nwell"] = (3, 0)
layer["nimplant"]= (4, 0)
layer["pimplant"]= (5, 0)
layer["vtg"] = (6, 0)
layer["vth"] = (7, 0)
layer["thkox"] = (8, 0)
layer["poly"] = (9, 0)
layer["contact"] = (10, 0)
layer["m1"] = (11, 0)
layer["via1"] = (12, 0)
layer["m2"] = (13, 0)
layer["via2"] = (14, 0)
layer["m3"] = (15, 0)
layer["via3"] = (16, 0)
layer["m4"] = (17, 0)
layer["via4"] = (18, 0)
layer["m5"] = (19, 0)
layer["via5"] = (20, 0)
layer["m6"] = (21, 0)
layer["via6"] = (22, 0)
layer["m7"] = (23, 0)
layer["via7"] = (24, 0)
layer["m8"] = (25, 0)
layer["via8"] = (26, 0)
layer["m9"] = (27, 0)
layer["via9"] = (28, 0)
layer["m10"] = (29, 0)
layer["text"] = (239, 0)
layer["boundary"]= (239, 0)
use_purpose = {}
# Layer names for external PDKs
layer_names = {}
layer_names["active"] = "active"
layer_names["pwell"] = "pwell"
layer_names["nwell"] = "nwell"
layer_names["nimplant"]= "nimplant"
layer_names["pimplant"]= "pimplant"
layer_names["vtg"] = "vtg"
layer_names["vth"] = "vth"
layer_names["thkox"] = "thkox"
layer_names["poly"] = "poly"
layer_names["contact"] = "contact"
layer_names["m1"] = "metal1"
layer_names["via1"] = "via1"
layer_names["m2"] = "metal2"
layer_names["via2"] = "via2"
layer_names["m3"] = "metal3"
layer_names["via3"] = "via3"
layer_names["m4"] = "metal4"
layer_names["via4"] = "via4"
layer_names["m5"] = "metal5"
layer_names["via5"] = "via5"
layer_names["m6"] = "metal6"
layer_names["via6"] = "via6"
layer_names["m7"] = "metal7"
layer_names["via7"] = "via7"
layer_names["m8"] = "metal8"
layer_names["via8"] = "via8"
layer_names["m9"] = "metal9"
layer_names["via9"] = "via9"
layer_names["m10"] = "metal10"
layer_names["text"] = "text"
layer_names["boundary"]= "boundary"
###################################################
# DRC/LVS Rules Setup
###################################################
#technology parameter
parameter={}
parameter["min_tx_size"] = 0.09
parameter["beta"] = 3
parameter["6T_inv_nmos_size"] = 0.205
parameter["6T_inv_pmos_size"] = 0.09
parameter["6T_access_size"] = 0.135
drclvs_home=os.environ.get("DRCLVS_HOME")
drc = d.design_rules("freepdk45")
#grid size
drc["grid"] = 0.0025
#DRC/LVS test set_up
drc["drc_rules"]=drclvs_home + "/calibreDRC.rul"
drc["lvs_rules"]=drclvs_home + "/calibreLVS.rul"
drc["xrc_rules"]=drclvs_home + "/calibrexRC.rul"
drc["layer_map"]=os.environ.get("OPENRAM_TECH") + "/freepdk45/layers.map"
# minwidth_tx with contact (no dog bone transistors)
drc["minwidth_tx"] = 0.09
drc["minlength_channel"] = 0.05
# WELL.2 Minimum spacing of nwell/pwell at different potential
drc["pwell_to_nwell"] = 0.225
# WELL.3 Minimum spacing of nwell/pwell at the same potential
# WELL.4 Minimum width of nwell/pwell
drc.add_layer("nwell",
width=0.2,
spacing=0.135)
drc.add_layer("pwell",
width=0.2,
spacing=0.135)
# POLY.1 Minimum width of poly
# POLY.2 Minimum spacing of poly AND active
drc.add_layer("poly",
width=0.05,
spacing=0.14)
# POLY.3 Minimum poly extension beyond active
drc["poly_extend_active"]=0.055
# Not a rule
drc["poly_to_contact"]=0.075
# POLY.4 Minimum enclosure of active around gate
drc["active_enclose_gate"]=0.07
# POLY.5 Minimum spacing of field poly to active
drc["poly_to_active"]=0.05
# POLY.6 Minimum Minimum spacing of field poly
drc["poly_to_field_poly"]=0.075
# Not a rule
drc["minarea_poly"]=0.0
# ACTIVE.1 Minimum width of active
# ACTIVE.2 Minimum spacing of active
drc.add_layer("active",
width=0.09,
spacing=0.08)
# ACTIVE.3 Minimum enclosure/spacing of nwell/pwell to active
drc.add_enclosure("nwell",
layer="active",
enclosure=0.055)
drc.add_enclosure("pwell",
layer="active",
enclosure=0.055)
# IMPLANT.1 Minimum spacing of nimplant/ pimplant to channel
drc["implant_to_channel"]=0.07
# Not a rule
drc.add_enclosure("implant",
layer="active",
enclosure=0)
# Not a rule
drc.add_enclosure("implant",
layer="contact",
enclosure=0)
# IMPLANT.2 Minimum spacing of nimplant/ pimplant to contact
drc["implant_to_contact"]=0.025
# IMPLANT.3 Minimum width/ spacing of nimplant/ pimplant
# IMPLANT.4 Minimum width/ spacing of nimplant/ pimplant
drc.add_layer("implant",
width=0.045,
spacing=0.045)
# CONTACT.1 Minimum width of contact
# CONTACT.2 Minimum spacing of contact
drc.add_layer("contact",
width=0.065,
spacing=0.075)
# CONTACT.4 Minimum enclosure of active around contact
drc.add_enclosure("active",
layer="contact",
enclosure=0.005)
# CONTACT.6 Minimum spacing of contact and gate
drc["active_contact_to_gate"]=0.0375
# CONTACT.7 Minimum spacing of contact and poly
drc["poly_contact_to_gate"]=0.090
# CONTACT.1 Minimum width of contact
# CONTACT.2 Minimum spacing of contact
drc.add_layer("contact",
width=0.065,
spacing=0.075)
# CONTACT.5 Minimum enclosure of poly around contact
drc.add_enclosure("poly",
layer="contact",
enclosure=0.005)
# CONTACT.6 Minimum spacing of contact and gate
drc["contact_to_gate"]=0.0375
# CONTACT.7 Minimum spacing of contact and poly
drc["contact_to_poly"]=0.090
# METAL1.1 Minimum width of metal1
# METAL1.2 Minimum spacing of metal1
drc.add_layer("m1",
width=0.065,
spacing=0.065)
# METAL1.3 Minimum enclosure around contact on two opposite sides
drc.add_enclosure("m1",
layer="contact",
enclosure=0,
extension=0.035)
# METAL1.4 inimum enclosure around via1 on two opposite sides
drc.add_enclosure("m1",
layer="via1",
enclosure=0,
extension=0.035)
# VIA1.1 Minimum width of via1
# VIA1.2 Minimum spacing of via1
drc.add_layer("via1",
width=0.065,
spacing=0.075)
# METALINT.1 Minimum width of intermediate metal
# METALINT.2 Minimum spacing of intermediate metal
drc.add_layer("m2",
width=0.07,
spacing=0.07)
# METALINT.3 Minimum enclosure around via1 on two opposite sides
drc.add_enclosure("m2",
layer="via1",
enclosure=0,
extension=0.035)
# METALINT.4 Minimum enclosure around via[2-3] on two opposite sides
drc.add_enclosure("m2",
layer="via2",
enclosure=0,
extension=0.035)
# VIA2-3.1 Minimum width of Via[2-3]
# VIA2-3.2 Minimum spacing of Via[2-3]
drc.add_layer("via2",
width=0.065,
spacing=0.085)
# METALINT.1 Minimum width of intermediate metal
# METALINT.2 Minimum spacing of intermediate metal
# Minimum spacing of m3 wider than 0.09 & longer than 0.3=0.09
# Minimum spacing of m3 wider than 0.27 & longer than 0.9=0.27
# Minimum spacing of m3 wider than 0.5 & longer than 1.8=0.5
# Minimum spacing of m3 wider than 0.9 & longer than 2.7=0.9
# Minimum spacing of m3 wider than 1.5 & longer than 4.0=1.5
drc.add_layer("m3",
width=0.07,
spacing=d.drc_lut({(0.00, 0.0): 0.07,
(0.09, 0.3): 0.09,
(0.27, 0.9): 0.27,
(0.50, 1.8): 0.5,
(0.90, 2.7): 0.9,
(1.50, 4.0): 1.5}))
# METALINT.3 Minimum enclosure around via1 on two opposite sides
drc.add_enclosure("m3",
layer="via2",
enclosure=0,
extension=0.035)
# METALINT.4 Minimum enclosure around via[2-3] on two opposite sides
drc.add_enclosure("m3",
layer="via3",
enclosure=0,
extension=0.035)
# VIA2-3.1 Minimum width of Via[2-3]
# VIA2-3.2 Minimum spacing of Via[2-3]
drc.add_layer("via3",
width=0.07,
spacing=0.085)
# METALSMG.1 Minimum width of semi-global metal
# METALSMG.2 Minimum spacing of semi-global metal
# Minimum spacing of m4 wider than 0.27 & longer than 0.9=0.27
# Minimum spacing of m4 wider than 0.5 & longer than 1.8=0.5
# Minimum spacing of m4 wider than 0.9 & longer than 2.7=0.9
# Minimum spacing of m4 wider than 1.5 & longer than 4.0=1.5
drc.add_layer("m4",
width=0.14,
spacing=d.drc_lut({(0.00, 0.0): 0.14,
(0.27, 0.9): 0.27,
(0.50, 1.8): 0.5,
(0.90, 2.7): 0.9,
(1.50, 4.0): 1.5}))
# METALSMG.3 Minimum enclosure around via[3-6] on two opposite sides
drc.add_enclosure("m4",
layer="via3",
enclosure=0.0025)
# Metal 5-10 are ommitted
###################################################
# Spice Simulation Parameters
###################################################
#spice info
spice = {}
spice["nmos"] = "nmos_vtg"
spice["pmos"] = "pmos_vtg"
# This is a map of corners to model files
SPICE_MODEL_DIR=os.environ.get("SPICE_MODEL_DIR")
spice["fet_models"] = {"TT": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"],
"FF": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"],
"SF": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"],
"FS": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"],
"SS": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"],
"ST": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"],
"TS": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"],
"FT": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"],
"TF": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"],
}
#spice stimulus related variables
spice["feasible_period"] = 5 # estimated feasible period in ns
spice["supply_voltages"] = [0.9, 1.0, 1.1] # Supply voltage corners in [Volts]
spice["nom_supply_voltage"] = 1.0 # Nominal supply voltage in [Volts]
spice["rise_time"] = 0.005 # rise time in [Nano-seconds]
spice["fall_time"] = 0.005 # fall time in [Nano-seconds]
spice["temperatures"] = [0, 25, 100] # Temperature corners (celcius)
spice["nom_temperature"] = 25 # Nominal temperature (celcius)
# analytical delay parameters
spice["nom_threshold"] = 0.4 # Typical Threshold voltage in Volts
spice["wire_unit_r"] = 0.25 # Unit wire resistance in ohms/square
spice["wire_unit_c"] = 2.3e-15 # Unit wire capacitance F/um^2, calculated from PTM
spice["min_tx_drain_c"] = 0.7 # Minimum transistor drain capacitance in ff
spice["min_tx_gate_c"] = 0.2 # Minimum transistor gate capacitance in ff
spice["dff_setup"] = 9 # DFF setup time in ps
spice["dff_hold"] = 1 # DFF hold time in ps
spice["dff_in_cap"] = 0.2091 # Input capacitance (D) [Femto-farad]
spice["dff_out_cap"] = 2 # Output capacitance (Q) [Femto-farad]
# analytical power parameters, many values are temporary
spice["bitcell_leakage"] = 1 # Leakage power of a single bitcell in nW
spice["inv_leakage"] = 1 # Leakage power of inverter in nW
spice["nand2_leakage"] = 1 # Leakage power of 2-input nand in nW
spice["nand3_leakage"] = 1 # Leakage power of 3-input nand in nW
spice["nand4_leakage"] = 1 # Leakage power of 4-input nand in nW
spice["nor2_leakage"] = 1 # Leakage power of 2-input nor in nW
spice["dff_leakage"] = 1 # Leakage power of flop in nW
spice["default_event_frequency"] = 100 # Default event activity of every gate. MHz
# Parameters related to sense amp enable timing and delay chain/RBL sizing
parameter["le_tau"] = 2.25 # In pico-seconds.
parameter["cap_relative_per_ff"] = 7.5 # Units of Relative Capacitance/ Femto-Farad
parameter["dff_clk_cin"] = 30.6 # relative capacitance
parameter["6tcell_wl_cin"] = 3 # relative capacitance
parameter["min_inv_para_delay"] = 2.4 # Tau delay units
parameter["sa_en_pmos_size"] = 0.72 # micro-meters
parameter["sa_en_nmos_size"] = 0.27 # micro-meters
parameter["sa_inv_pmos_size"] = 0.54 # micro-meters
parameter["sa_inv_nmos_size"] = 0.27 # micro-meters
parameter["bitcell_drain_cap"] = 0.1 # In Femto-Farad, approximation of drain capacitance
# Spice Values uses to calculate analytical delay based on CACTI equations
spice["i_on_n"] = 0.0004463 # A/um
spice["i_on_p"] = 0.0000771 # A/um
spice["tox"] = 0.00114 # microns
spice["eps_ox"] = 0.00245e-14 # F/um, calculated from CACTI 45nm data
spice["cox"] = spice["eps_ox"]/spice["tox"] # F/um^2
spice["c_g_ideal"] = spice["cox"]*drc["minlength_channel"] # F/um
spice["c_overlap"] = 0.2*spice["c_g_ideal"] # F/um
spice["c_fringe"] = 0 # F/um, not defined in this technology
spice["cpolywire"] = 0 # F/um, replicated from CACTI which is hardcoded to 0
spice["c_junc"] = 5e-16 #F/um^2
spice["c_junc_sw"] = 5e-16 #F/um
spice["wire_c_per_um"] = spice["wire_unit_c"]*drc["minwidth_m2"] # Unit c by m2 width, F/um units
spice["wire_r_per_um"] = spice["wire_unit_r"]/drc["minwidth_m2"] # Unit r per m2 width, Ohms/um units
spice["mobility_n"] = 0.045e8 # um^2/(V*s)
spice["V_dsat"] = 0.0938 # From CACTI 45nm tech
spice["sa_transconductance"] = (spice["mobility_n"])*spice["cox"]*(parameter["sa_inv_nmos_size"]/parameter["min_tx_size"])*spice["V_dsat"]
###################################################
# Technology Tool Preferences
###################################################
#drc_name = "calibre"
#lvs_name = "calibre"
#pex_name = "calibre"
drc_name = "klayout"
lvs_name = "klayout"
pex_name = "klayout"
blackbox_bitcell = False