mirror of https://github.com/VLSIDA/OpenRAM.git
304 lines
12 KiB
Python
304 lines
12 KiB
Python
# See LICENSE for licensing information.
|
|
#
|
|
# Copyright (c) 2016-2019 Regents of the University of California and The Board
|
|
# of Regents for the Oklahoma Agricultural and Mechanical College
|
|
# (acting for and on behalf of Oklahoma State University)
|
|
# All rights reserved.
|
|
#
|
|
import contact
|
|
import pgate
|
|
import debug
|
|
from tech import drc, parameter, spice
|
|
from vector import vector
|
|
import logical_effort
|
|
from sram_factory import factory
|
|
|
|
|
|
class pnand3(pgate.pgate):
|
|
"""
|
|
This module generates gds of a parametrically sized 2-input nand.
|
|
This model use ptx to generate a 2-input nand within a cetrain height.
|
|
"""
|
|
def __init__(self, name, size=1, height=None):
|
|
""" Creates a cell for a simple 3 input nand """
|
|
|
|
debug.info(2,
|
|
"creating pnand3 structure {0} with size of {1}".format(name,
|
|
size))
|
|
self.add_comment("size: {}".format(size))
|
|
|
|
# We have trouble pitch matching a 3x sizes to the bitcell...
|
|
# If we relax this, we could size this better.
|
|
self.size = size
|
|
self.nmos_size = 2 * size
|
|
self.pmos_size = parameter["beta"] * size
|
|
self.nmos_width = self.nmos_size * drc("minwidth_tx")
|
|
self.pmos_width = self.pmos_size * drc("minwidth_tx")
|
|
|
|
# FIXME: Allow these to be sized
|
|
debug.check(size == 1,"Size 1 pnand3 is only supported now.")
|
|
self.tx_mults = 1
|
|
|
|
# Creates the netlist and layout
|
|
pgate.pgate.__init__(self, name, height)
|
|
|
|
def add_pins(self):
|
|
""" Adds pins for spice netlist """
|
|
pin_list = ["A", "B", "C", "Z", "vdd", "gnd"]
|
|
dir_list = ["INPUT", "INPUT", "INPUT", "OUTPUT", "POWER", "GROUND"]
|
|
self.add_pin_list(pin_list, dir_list)
|
|
|
|
def create_netlist(self):
|
|
self.add_pins()
|
|
self.add_ptx()
|
|
self.create_ptx()
|
|
|
|
def create_layout(self):
|
|
""" Calls all functions related to the generation of the layout """
|
|
|
|
self.setup_layout_constants()
|
|
self.route_supply_rails()
|
|
self.place_ptx()
|
|
self.connect_rails()
|
|
self.add_well_contacts()
|
|
self.extend_wells(self.well_pos)
|
|
self.route_inputs()
|
|
self.route_output()
|
|
|
|
def add_ptx(self):
|
|
""" Create the PMOS and NMOS transistors. """
|
|
self.nmos = factory.create(module_type="ptx",
|
|
width=self.nmos_width,
|
|
mults=self.tx_mults,
|
|
tx_type="nmos",
|
|
connect_poly=True,
|
|
connect_active=True)
|
|
self.add_mod(self.nmos)
|
|
|
|
self.pmos = factory.create(module_type="ptx",
|
|
width=self.pmos_width,
|
|
mults=self.tx_mults,
|
|
tx_type="pmos",
|
|
connect_poly=True,
|
|
connect_active=True)
|
|
self.add_mod(self.pmos)
|
|
|
|
def setup_layout_constants(self):
|
|
""" Pre-compute some handy layout parameters. """
|
|
|
|
# Compute the overlap of the source and drain pins
|
|
self.overlap_offset = self.pmos.get_pin("D").ll() - self.pmos.get_pin("S").ll()
|
|
|
|
# Two PMOS devices and a well contact. Separation between each.
|
|
# Enclosure space on the sides.
|
|
self.well_width = 3 * self.pmos.active_width + self.pmos.active_contact.width \
|
|
+ 2 * self.active_space + 2 * self.nwell_enclose_active \
|
|
- self.overlap_offset.x
|
|
self.width = self.well_width
|
|
# Height is an input parameter, so it is not recomputed.
|
|
|
|
# This is the extra space needed to ensure DRC rules
|
|
# to the active contacts
|
|
nmos = factory.create(module_type="ptx", tx_type="nmos")
|
|
extra_contact_space = max(-nmos.get_pin("D").by(), 0)
|
|
# This is a poly-to-poly of a flipped cell
|
|
self.top_bottom_space = max(0.5 * self.m1_width + self.m1_space \
|
|
+ extra_contact_space,
|
|
self.poly_extend_active,
|
|
self.poly_space)
|
|
|
|
def route_supply_rails(self):
|
|
""" Add vdd/gnd rails to the top and bottom. """
|
|
self.add_layout_pin_rect_center(text="gnd",
|
|
layer="m1",
|
|
offset=vector(0.5 * self.width, 0),
|
|
width=self.width)
|
|
|
|
self.add_layout_pin_rect_center(text="vdd",
|
|
layer="m1",
|
|
offset=vector(0.5 * self.width, self.height),
|
|
width=self.width)
|
|
|
|
def create_ptx(self):
|
|
"""
|
|
Create the PMOS and NMOS in the netlist.
|
|
"""
|
|
|
|
self.pmos1_inst = self.add_inst(name="pnand3_pmos1",
|
|
mod=self.pmos)
|
|
self.connect_inst(["vdd", "A", "Z", "vdd"])
|
|
|
|
self.pmos2_inst = self.add_inst(name="pnand3_pmos2",
|
|
mod=self.pmos)
|
|
self.connect_inst(["Z", "B", "vdd", "vdd"])
|
|
|
|
self.pmos3_inst = self.add_inst(name="pnand3_pmos3",
|
|
mod=self.pmos)
|
|
self.connect_inst(["Z", "C", "vdd", "vdd"])
|
|
|
|
self.nmos1_inst = self.add_inst(name="pnand3_nmos1",
|
|
mod=self.nmos)
|
|
self.connect_inst(["Z", "C", "net1", "gnd"])
|
|
|
|
self.nmos2_inst = self.add_inst(name="pnand3_nmos2",
|
|
mod=self.nmos)
|
|
self.connect_inst(["net1", "B", "net2", "gnd"])
|
|
|
|
self.nmos3_inst = self.add_inst(name="pnand3_nmos3",
|
|
mod=self.nmos)
|
|
self.connect_inst(["net2", "A", "gnd", "gnd"])
|
|
|
|
def place_ptx(self):
|
|
"""
|
|
Place the PMOS and NMOS in the layout at the upper-most
|
|
and lowest position to provide maximum routing in channel
|
|
"""
|
|
|
|
pmos1_pos = vector(self.pmos.active_offset.x,
|
|
self.height - self.pmos.active_height \
|
|
- self.top_bottom_space)
|
|
self.pmos1_inst.place(pmos1_pos)
|
|
|
|
pmos2_pos = pmos1_pos + self.overlap_offset
|
|
self.pmos2_inst.place(pmos2_pos)
|
|
|
|
self.pmos3_pos = pmos2_pos + self.overlap_offset
|
|
self.pmos3_inst.place(self.pmos3_pos)
|
|
|
|
|
|
nmos1_pos = vector(self.pmos.active_offset.x,
|
|
self.top_bottom_space)
|
|
self.nmos1_inst.place(nmos1_pos)
|
|
|
|
nmos2_pos = nmos1_pos + self.overlap_offset
|
|
self.nmos2_inst.place(nmos2_pos)
|
|
|
|
self.nmos3_pos = nmos2_pos + self.overlap_offset
|
|
self.nmos3_inst.place(self.nmos3_pos)
|
|
|
|
# This will help with the wells and the input/output placement
|
|
self.output_pos = vector(0, 0.5*self.height)
|
|
|
|
# This should be placed at the top of the NMOS well
|
|
self.well_pos = self.output_pos
|
|
|
|
def add_well_contacts(self):
|
|
""" Add n/p well taps to the layout and connect to supplies """
|
|
|
|
self.add_nwell_contact(self.pmos, self.pmos3_pos)
|
|
self.add_pwell_contact(self.nmos, self.nmos3_pos)
|
|
|
|
def connect_rails(self):
|
|
""" Connect the nmos and pmos to its respective power rails """
|
|
|
|
self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd")
|
|
|
|
self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd")
|
|
|
|
self.connect_pin_to_rail(self.pmos2_inst, "D", "vdd")
|
|
|
|
def route_inputs(self):
|
|
""" Route the A and B inputs """
|
|
# wire space or wire and one contact space
|
|
metal_spacing = max(self.m1_space + self.m1_width,
|
|
self.m2_space + self.m2_width,
|
|
self.m1_space + 0.5 *contact.polym1.width + 0.5 * self.m1_width)
|
|
|
|
active_spacing = max(self.m1_space,
|
|
0.5 * contact.polym1.first_layer_width + self.poly_to_active)
|
|
inputC_yoffset = self.nmos3_pos.y + self.nmos.active_height + active_spacing
|
|
self.route_input_gate(self.pmos3_inst,
|
|
self.nmos3_inst,
|
|
inputC_yoffset,
|
|
"C",
|
|
position="center")
|
|
|
|
inputB_yoffset = inputC_yoffset + metal_spacing
|
|
self.route_input_gate(self.pmos2_inst,
|
|
self.nmos2_inst,
|
|
inputB_yoffset,
|
|
"B",
|
|
position="center")
|
|
|
|
self.inputA_yoffset = inputB_yoffset + metal_spacing
|
|
self.route_input_gate(self.pmos1_inst,
|
|
self.nmos1_inst,
|
|
self.inputA_yoffset,
|
|
"A",
|
|
position="center")
|
|
|
|
def route_output(self):
|
|
""" Route the Z output """
|
|
# PMOS1 drain
|
|
pmos1_pin = self.pmos1_inst.get_pin("D")
|
|
# PMOS3 drain
|
|
pmos3_pin = self.pmos3_inst.get_pin("D")
|
|
# NMOS3 drain
|
|
nmos3_pin = self.nmos3_inst.get_pin("D")
|
|
|
|
# Go up to metal2 for ease on all output pins
|
|
self.add_via_center(layers=self.m1_stack,
|
|
offset=pmos1_pin.center())
|
|
self.add_via_center(layers=self.m1_stack,
|
|
offset=pmos3_pin.center())
|
|
self.add_via_center(layers=self.m1_stack,
|
|
offset=nmos3_pin.center())
|
|
|
|
# PMOS3 and NMOS3 are drain aligned
|
|
self.add_path("m2", [pmos3_pin.bc(), nmos3_pin.uc()])
|
|
# Route in the A input track (top track)
|
|
mid_offset = vector(nmos3_pin.center().x, self.inputA_yoffset)
|
|
self.add_path("m2", [pmos1_pin.bc(), mid_offset, nmos3_pin.uc()])
|
|
|
|
# This extends the output to the edge of the cell
|
|
self.add_via_center(layers=self.m1_stack,
|
|
offset=mid_offset)
|
|
self.add_layout_pin_rect_center(text="Z",
|
|
layer="m1",
|
|
offset=mid_offset,
|
|
width=contact.m1m2.first_layer_width,
|
|
height=contact.m1m2.first_layer_height)
|
|
|
|
def analytical_power(self, corner, load):
|
|
"""Returns dynamic and leakage power. Results in nW"""
|
|
c_eff = self.calculate_effective_capacitance(load)
|
|
freq = spice["default_event_frequency"]
|
|
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
|
|
power_leak = spice["nand3_leakage"]
|
|
|
|
total_power = self.return_power(power_dyn, power_leak)
|
|
return total_power
|
|
|
|
def calculate_effective_capacitance(self, load):
|
|
"""Computes effective capacitance. Results in fF"""
|
|
c_load = load
|
|
# In fF
|
|
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
|
|
transition_prob = 0.1094
|
|
return transition_prob *(c_load + c_para)
|
|
|
|
def input_load(self):
|
|
"""Return the relative input capacitance of a single input"""
|
|
return self.nmos_size + self.pmos_size
|
|
|
|
def get_stage_effort(self, cout, inp_is_rise=True):
|
|
"""
|
|
Returns an object representing the parameters for delay in tau units.
|
|
Optional is_rise refers to the input direction rise/fall.
|
|
Input inverted by this stage.
|
|
"""
|
|
parasitic_delay = 3
|
|
return logical_effort.logical_effort(self.name,
|
|
self.size,
|
|
self.input_load(),
|
|
cout,
|
|
parasitic_delay,
|
|
not inp_is_rise)
|
|
|
|
def build_graph(self, graph, inst_name, port_nets):
|
|
"""
|
|
Adds edges based on inputs/outputs.
|
|
Overrides base class function.
|
|
"""
|
|
self.add_graph_edges(graph, port_nets)
|