OpenRAM/compiler/bitcells/pbitcell.py

896 lines
46 KiB
Python

# See LICENSE for licensing information.
#
#Copyright (c) 2016-2019 Regents of the University of California and The Board
#of Regents for the Oklahoma Agricultural and Mechanical College
#(acting for and on behalf of Oklahoma State University)
#All rights reserved.
#
import contact
import design
import debug
from tech import drc, parameter, spice
from vector import vector
from ptx import ptx
from globals import OPTS
import logical_effort
class pbitcell(design.design):
"""
This module implements a parametrically sized multi-port bitcell,
with a variable number of read/write, write, and read ports
"""
def __init__(self, name, replica_bitcell=False):
self.num_rw_ports = OPTS.num_rw_ports
self.num_w_ports = OPTS.num_w_ports
self.num_r_ports = OPTS.num_r_ports
self.total_ports = self.num_rw_ports + self.num_w_ports + self.num_r_ports
self.replica_bitcell = replica_bitcell
design.design.__init__(self, name)
debug.info(2, "create a multi-port bitcell with {0} rw ports, {1} w ports and {2} r ports".format(self.num_rw_ports,
self.num_w_ports,
self.num_r_ports))
self.create_netlist()
# We must always create the bitcell layout because some transistor sizes in the other netlists depend on it
self.create_layout()
def create_netlist(self):
self.add_pins()
self.add_modules()
self.create_storage()
if(self.num_rw_ports > 0):
self.create_readwrite_ports()
if(self.num_w_ports > 0):
self.create_write_ports()
if(self.num_r_ports > 0):
self.create_read_ports()
def create_layout(self):
self.calculate_spacing()
self.calculate_postions()
self.place_storage()
self.route_storage()
self.route_rails()
if(self.num_rw_ports > 0):
self.place_readwrite_ports()
self.route_readwrite_access()
if(self.num_w_ports > 0):
self.place_write_ports()
self.route_write_access()
if(self.num_r_ports > 0):
self.place_read_ports()
self.route_read_access()
self.extend_well()
self.route_wordlines()
self.route_bitlines()
self.route_supply()
if self.replica_bitcell:
self.route_rbc_short()
# in netlist_only mode, calling offset_all_coordinates or translate_all will not be possible
# this function is not needed to calculate the dimensions of pbitcell in netlist_only mode though
if not OPTS.netlist_only:
self.offset_all_coordinates()
gnd_overlap = vector(0, 0.5*contact.well.width)
self.translate_all(gnd_overlap)
def add_pins(self):
""" add pins and set names for bitlines and wordlines """
self.rw_bl_names = []
self.rw_br_names = []
self.w_bl_names = []
self.w_br_names = []
self.r_bl_names = []
self.r_br_names = []
self.rw_wl_names = []
self.w_wl_names = []
self.r_wl_names = []
port = 0
for k in range(self.num_rw_ports):
self.add_pin("bl{}".format(port))
self.add_pin("br{}".format(port))
self.rw_bl_names.append("bl{}".format(port))
self.rw_br_names.append("br{}".format(port))
port += 1
for k in range(self.num_w_ports):
self.add_pin("bl{}".format(port))
self.add_pin("br{}".format(port))
self.w_bl_names.append("bl{}".format(port))
self.w_br_names.append("br{}".format(port))
port += 1
for k in range(self.num_r_ports):
self.add_pin("bl{}".format(port))
self.add_pin("br{}".format(port))
self.r_bl_names.append("bl{}".format(port))
self.r_br_names.append("br{}".format(port))
port += 1
port = 0
for k in range(self.num_rw_ports):
self.add_pin("wl{}".format(port))
self.rw_wl_names.append("wl{}".format(port))
port += 1
for k in range(self.num_w_ports):
self.add_pin("wl{}".format(port))
self.w_wl_names.append("wl{}".format(port))
port += 1
for k in range(self.num_r_ports):
self.add_pin("wl{}".format(port))
self.r_wl_names.append("wl{}".format(port))
port += 1
self.add_pin("vdd")
self.add_pin("gnd")
# if this is a replica bitcell, replace the instances of Q_bar with vdd
if self.replica_bitcell:
self.Q_bar = "vdd"
else:
self.Q_bar = "Q_bar"
def add_modules(self):
""" Determine size of transistors and add ptx modules """
# if there are any read/write ports, then the inverter nmos is sized based the number of read/write ports
if(self.num_rw_ports > 0):
inverter_nmos_width = self.num_rw_ports*parameter["6T_inv_nmos_size"]
inverter_pmos_width = parameter["6T_inv_pmos_size"]
readwrite_nmos_width = parameter["6T_access_size"]
write_nmos_width = parameter["6T_access_size"]
read_nmos_width = 2*parameter["6T_inv_pmos_size"]
# if there are no read/write ports, then the inverter nmos is statically sized for the dual port case
else:
inverter_nmos_width = 2*parameter["6T_inv_pmos_size"]
inverter_pmos_width = parameter["6T_inv_pmos_size"]
readwrite_nmos_width = parameter["6T_access_size"]
write_nmos_width = parameter["6T_access_size"]
read_nmos_width = 2*parameter["6T_inv_pmos_size"]
# create ptx for inverter transistors
self.inverter_nmos = ptx(width=inverter_nmos_width,
tx_type="nmos")
self.add_mod(self.inverter_nmos)
self.inverter_pmos = ptx(width=inverter_pmos_width,
tx_type="pmos")
self.add_mod(self.inverter_pmos)
# create ptx for readwrite transitors
self.readwrite_nmos = ptx(width=readwrite_nmos_width,
tx_type="nmos")
self.add_mod(self.readwrite_nmos)
# create ptx for write transitors
self.write_nmos = ptx(width=write_nmos_width,
tx_type="nmos")
self.add_mod(self.write_nmos)
# create ptx for read transistors
self.read_nmos = ptx(width=read_nmos_width,
tx_type="nmos")
self.add_mod(self.read_nmos)
def calculate_spacing(self):
""" Calculate transistor spacings """
# calculate metal contact extensions over transistor active
readwrite_nmos_contact_extension = 0.5*(self.readwrite_nmos.active_contact.height - self.readwrite_nmos.active_height)
write_nmos_contact_extension = 0.5*(self.write_nmos.active_contact.height - self.write_nmos.active_height)
read_nmos_contact_extension = 0.5*(self.read_nmos.active_contact.height - self.read_nmos.active_height)
max_contact_extension = max(readwrite_nmos_contact_extension, write_nmos_contact_extension, read_nmos_contact_extension)
# y-offset for the access transistor's gate contact
self.gate_contact_yoffset = max_contact_extension + self.m2_space + 0.5*max(contact.poly.height, contact.m1m2.height)
# y-position of access transistors
self.port_ypos = self.m1_space + 0.5*contact.m1m2.height + self.gate_contact_yoffset
# y-position of inverter nmos
self.inverter_nmos_ypos = self.port_ypos
# spacing between ports (same for read/write and write ports)
self.bitline_offset = -0.5*self.readwrite_nmos.active_width + 0.5*contact.m1m2.height + self.m2_space + self.m2_width
m2_constraint = self.bitline_offset + self.m2_space + 0.5*contact.m1m2.height - 0.5*self.readwrite_nmos.active_width
self.write_port_spacing = max(self.active_space, self.m1_space, m2_constraint)
self.read_port_spacing = self.bitline_offset + self.m2_space
# spacing between cross coupled inverters
self.inverter_to_inverter_spacing = contact.poly.width + self.m1_space
# calculations related to inverter connections
inverter_pmos_contact_extension = 0.5*(self.inverter_pmos.active_contact.height - self.inverter_pmos.active_height)
inverter_nmos_contact_extension = 0.5*(self.inverter_nmos.active_contact.height - self.inverter_nmos.active_height)
self.inverter_gap = max(self.poly_to_active, self.m1_space + inverter_nmos_contact_extension) \
+ self.poly_to_polycontact + 2*contact.poly.width \
+ self.m1_space + inverter_pmos_contact_extension
self.cross_couple_lower_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height \
+ max(self.poly_to_active, self.m1_space + inverter_nmos_contact_extension) \
+ 0.5*contact.poly.width
self.cross_couple_upper_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height \
+ max(self.poly_to_active, self.m1_space + inverter_nmos_contact_extension) \
+ self.poly_to_polycontact \
+ 1.5*contact.poly.width
# spacing between wordlines (and gnd)
self.rowline_spacing = self.m1_space + contact.m1m2.width
self.rowline_offset = -0.5*self.m1_width
# spacing for vdd
implant_constraint = max(inverter_pmos_contact_extension, 0) + 2*self.implant_enclose_active + 0.5*(contact.well.width - self.m1_width)
metal1_constraint = max(inverter_pmos_contact_extension, 0) + self.m1_space
self.vdd_offset = max(implant_constraint, metal1_constraint) + 0.5*self.m1_width
# read port dimensions
width_reduction = self.read_nmos.active_width - self.read_nmos.get_pin("D").cx()
self.read_port_width = 2*self.read_nmos.active_width - 2*width_reduction
def calculate_postions(self):
""" Calculate positions that describe the edges and dimensions of the cell """
self.botmost_ypos = -0.5*self.m1_width - self.total_ports*self.rowline_spacing
self.topmost_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height + self.vdd_offset
self.leftmost_xpos = -0.5*self.inverter_to_inverter_spacing - self.inverter_nmos.active_width \
- self.num_rw_ports*(self.readwrite_nmos.active_width + self.write_port_spacing) \
- self.num_w_ports*(self.write_nmos.active_width + self.write_port_spacing) \
- self.num_r_ports*(self.read_port_width + self.read_port_spacing) \
- self.bitline_offset - 0.5*contact.m1m2.width
self.width = -2*self.leftmost_xpos
self.height = self.topmost_ypos - self.botmost_ypos
self.center_ypos = 0.5*(self.topmost_ypos + self.botmost_ypos)
def create_storage(self):
"""
Creates the crossed coupled inverters that act as storage for the bitcell.
The stored value of the cell is denoted as "Q", and the inverted value as "Q_bar".
"""
# create active for nmos
self.inverter_nmos_left = self.add_inst(name="inverter_nmos_left",
mod=self.inverter_nmos)
self.connect_inst(["Q", self.Q_bar, "gnd", "gnd"])
self.inverter_nmos_right = self.add_inst(name="inverter_nmos_right",
mod=self.inverter_nmos)
self.connect_inst(["gnd", "Q", self.Q_bar, "gnd"])
# create active for pmos
self.inverter_pmos_left = self.add_inst(name="inverter_pmos_left",
mod=self.inverter_pmos)
self.connect_inst(["Q", self.Q_bar, "vdd", "vdd"])
self.inverter_pmos_right = self.add_inst(name="inverter_pmos_right",
mod=self.inverter_pmos)
self.connect_inst(["vdd", "Q", self.Q_bar, "vdd"])
def place_storage(self):
""" Places the transistors for the crossed coupled inverters in the bitcell """
# calculate transistor offsets
left_inverter_xpos = -0.5*self.inverter_to_inverter_spacing - self.inverter_nmos.active_width
right_inverter_xpos = 0.5*self.inverter_to_inverter_spacing
inverter_pmos_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height + self.inverter_gap
# create active for nmos
self.inverter_nmos_left.place([left_inverter_xpos, self.inverter_nmos_ypos])
self.inverter_nmos_right.place([right_inverter_xpos, self.inverter_nmos_ypos])
# create active for pmos
self.inverter_pmos_left.place([left_inverter_xpos, inverter_pmos_ypos])
self.inverter_pmos_right.place([right_inverter_xpos, inverter_pmos_ypos])
# update furthest left and right transistor edges (this will propagate to further transistor offset calculations)
self.left_building_edge = left_inverter_xpos
self.right_building_edge = right_inverter_xpos + self.inverter_nmos.active_width
def route_storage(self):
""" Routes inputs and outputs of inverters to cross couple them """
# connect input (gate) of inverters
self.add_path("poly", [self.inverter_nmos_left.get_pin("G").uc(), self.inverter_pmos_left.get_pin("G").bc()])
self.add_path("poly", [self.inverter_nmos_right.get_pin("G").uc(), self.inverter_pmos_right.get_pin("G").bc()])
# connect output (drain/source) of inverters
self.add_path("metal1",
[self.inverter_nmos_left.get_pin("D").uc(), self.inverter_pmos_left.get_pin("D").bc()],
width=contact.active.second_layer_width)
self.add_path("metal1",
[self.inverter_nmos_right.get_pin("S").uc(), self.inverter_pmos_right.get_pin("S").bc()],
width=contact.active.second_layer_width)
# add contacts to connect gate poly to drain/source metal1 (to connect Q to Q_bar)
contact_offset_left = vector(self.inverter_nmos_left.get_pin("D").rc().x + 0.5*contact.poly.height, self.cross_couple_upper_ypos)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_left,
directions=("H","H"))
contact_offset_right = vector(self.inverter_nmos_right.get_pin("S").lc().x - 0.5*contact.poly.height, self.cross_couple_lower_ypos)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=contact_offset_right,
directions=("H","H"))
# connect contacts to gate poly (cross couple connections)
gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").lc().x, contact_offset_left.y)
self.add_path("poly", [contact_offset_left, gate_offset_right])
gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").rc().x, contact_offset_right.y)
self.add_path("poly", [contact_offset_right, gate_offset_left])
def route_rails(self):
""" Adds gnd and vdd rails and connects them to the inverters """
# Add rails for vdd and gnd
gnd_ypos = self.rowline_offset - self.total_ports*self.rowline_spacing
self.gnd_position = vector(0, gnd_ypos)
self.add_rect_center(layer="metal1",
offset=self.gnd_position,
width=self.width,
height=self.m1_width)
self.add_power_pin("gnd", vector(0,gnd_ypos))
vdd_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height + self.inverter_gap + self.inverter_pmos.active_height + self.vdd_offset
self.vdd_position = vector(0, vdd_ypos)
self.add_rect_center(layer="metal1",
offset=self.vdd_position,
width=self.width,
height=self.m1_width)
self.add_power_pin("vdd", vector(0,vdd_ypos))
def create_readwrite_ports(self):
"""
Creates read/write ports to the bit cell. A differential pair of transistor can both read and write, like in a 6T cell.
A read or write is enabled by setting a Read-Write-Wordline (RWWL) high, subsequently turning on the transistor.
The transistor is connected between a Read-Write-Bitline (RWBL) and the storage component of the cell (Q).
In a write operation, driving RWBL high or low sets the value of the cell.
In a read operation, RWBL is precharged, then is either remains high or is discharged depending on the value of the cell.
This is a differential design, so each write port has a mirrored port that connects RWBR to Q_bar.
"""
# define read/write transistor variables as empty arrays based on the number of read/write ports
self.readwrite_nmos_left = [None] * self.num_rw_ports
self.readwrite_nmos_right = [None] * self.num_rw_ports
# iterate over the number of read/write ports
for k in range(0,self.num_rw_ports):
# add read/write transistors
self.readwrite_nmos_left[k] = self.add_inst(name="readwrite_nmos_left{}".format(k),
mod=self.readwrite_nmos)
self.connect_inst([self.rw_bl_names[k], self.rw_wl_names[k], "Q", "gnd"])
self.readwrite_nmos_right[k] = self.add_inst(name="readwrite_nmos_right{}".format(k),
mod=self.readwrite_nmos)
self.connect_inst([self.Q_bar, self.rw_wl_names[k], self.rw_br_names[k], "gnd"])
def place_readwrite_ports(self):
""" Places read/write ports in the bit cell """
# define read/write transistor variables as empty arrays based on the number of read/write ports
self.rwwl_positions = [None] * self.num_rw_ports
self.rwbl_positions = [None] * self.num_rw_ports
self.rwbr_positions = [None] * self.num_rw_ports
# iterate over the number of read/write ports
for k in range(0,self.num_rw_ports):
# calculate read/write transistor offsets
left_readwrite_transistor_xpos = self.left_building_edge \
- (k+1)*self.write_port_spacing \
- (k+1)*self.readwrite_nmos.active_width
right_readwrite_transistor_xpos = self.right_building_edge \
+ (k+1)*self.write_port_spacing \
+ k*self.readwrite_nmos.active_width
# place read/write transistors
self.readwrite_nmos_left[k].place(offset=[left_readwrite_transistor_xpos, self.port_ypos])
self.readwrite_nmos_right[k].place(offset=[right_readwrite_transistor_xpos, self.port_ypos])
# add pin for RWWL
rwwl_ypos = self.rowline_offset - k*self.rowline_spacing
self.rwwl_positions[k] = vector(0, rwwl_ypos)
self.add_layout_pin_rect_center(text=self.rw_wl_names[k],
layer="metal1",
offset=self.rwwl_positions[k],
width=self.width,
height=self.m1_width)
# add pins for RWBL and RWBR
rwbl_xpos = left_readwrite_transistor_xpos - self.bitline_offset + 0.5*self.m2_width
self.rwbl_positions[k] = vector(rwbl_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.rw_bl_names[k],
layer="metal2",
offset=self.rwbl_positions[k],
height=self.height)
rwbr_xpos = right_readwrite_transistor_xpos + self.readwrite_nmos.active_width + self.bitline_offset - 0.5*self.m2_width
self.rwbr_positions[k] = vector(rwbr_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.rw_br_names[k],
layer="metal2",
offset=self.rwbr_positions[k],
height=self.height)
# update furthest left and right transistor edges
self.left_building_edge = left_readwrite_transistor_xpos
self.right_building_edge = right_readwrite_transistor_xpos + self.readwrite_nmos.active_width
def create_write_ports(self):
"""
Creates write ports in the bit cell. A differential pair of transistors can write only.
A write is enabled by setting a Write-Rowline (WWL) high, subsequently turning on the transistor.
The transistor is connected between a Write-Bitline (WBL) and the storage component of the cell (Q).
In a write operation, driving WBL high or low sets the value of the cell.
This is a differential design, so each write port has a mirrored port that connects WBR to Q_bar.
"""
# define write transistor variables as empty arrays based on the number of write ports
self.write_nmos_left = [None] * self.num_w_ports
self.write_nmos_right = [None] * self.num_w_ports
# iterate over the number of write ports
for k in range(0,self.num_w_ports):
# add write transistors
self.write_nmos_left[k] = self.add_inst(name="write_nmos_left{}".format(k),
mod=self.write_nmos)
self.connect_inst([self.w_bl_names[k], self.w_wl_names[k], "Q", "gnd"])
self.write_nmos_right[k] = self.add_inst(name="write_nmos_right{}".format(k),
mod=self.write_nmos)
self.connect_inst([self.Q_bar, self.w_wl_names[k], self.w_br_names[k], "gnd"])
def place_write_ports(self):
""" Places write ports in the bit cell """
# define write transistor variables as empty arrays based on the number of write ports
self.wwl_positions = [None] * self.num_w_ports
self.wbl_positions = [None] * self.num_w_ports
self.wbr_positions = [None] * self.num_w_ports
# iterate over the number of write ports
for k in range(0,self.num_w_ports):
# Add transistors
# calculate write transistor offsets
left_write_transistor_xpos = self.left_building_edge \
- (k+1)*self.write_port_spacing \
- (k+1)*self.write_nmos.active_width
right_write_transistor_xpos = self.right_building_edge \
+ (k+1)*self.write_port_spacing \
+ k*self.write_nmos.active_width
# add write transistors
self.write_nmos_left[k].place(offset=[left_write_transistor_xpos, self.port_ypos])
self.write_nmos_right[k].place(offset=[right_write_transistor_xpos, self.port_ypos])
# add pin for WWL
wwl_ypos = rwwl_ypos = self.rowline_offset - self.num_rw_ports*self.rowline_spacing - k*self.rowline_spacing
self.wwl_positions[k] = vector(0, wwl_ypos)
self.add_layout_pin_rect_center(text=self.w_wl_names[k],
layer="metal1",
offset=self.wwl_positions[k],
width=self.width,
height=self.m1_width)
# add pins for WBL and WBR
wbl_xpos = left_write_transistor_xpos - self.bitline_offset + 0.5*self.m2_width
self.wbl_positions[k] = vector(wbl_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.w_bl_names[k],
layer="metal2",
offset=self.wbl_positions[k],
height=self.height)
wbr_xpos = right_write_transistor_xpos + self.write_nmos.active_width + self.bitline_offset - 0.5*self.m2_width
self.wbr_positions[k] = vector(wbr_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.w_br_names[k],
layer="metal2",
offset=self.wbr_positions[k],
height=self.height)
# update furthest left and right transistor edges
self.left_building_edge = left_write_transistor_xpos
self.right_building_edge = right_write_transistor_xpos + self.write_nmos.active_width
def create_read_ports(self):
"""
Creates read ports in the bit cell. A differential pair of ports can read only.
Two transistors function as a read port, denoted as the "read transistor" and the "read-access transistor".
The read transistor is connected to RWL (gate), RBL (drain), and the read-access transistor (source).
The read-access transistor is connected to Q_bar (gate), gnd (source), and the read transistor (drain).
A read is enabled by setting a Read-Rowline (RWL) high, subsequently turning on the read transistor.
The Read-Bitline (RBL) is precharged to high, and when the value of Q_bar is high, the read-access transistor
is turned on, creating a connection between RBL and gnd. RBL subsequently discharges allowing for a differential read
using sense amps. This is a differential design, so each read port has a mirrored port that connects RBL_bar to Q.
"""
# define read transistor variables as empty arrays based on the number of read ports
self.read_nmos_left = [None] * self.num_r_ports
self.read_nmos_right = [None] * self.num_r_ports
self.read_access_nmos_left = [None] * self.num_r_ports
self.read_access_nmos_right = [None] * self.num_r_ports
# iterate over the number of read ports
for k in range(0,self.num_r_ports):
# add read-access transistors
self.read_access_nmos_left[k] = self.add_inst(name="read_access_nmos_left{}".format(k),
mod=self.read_nmos)
self.connect_inst(["RA_to_R_left{}".format(k), self.Q_bar, "gnd", "gnd"])
self.read_access_nmos_right[k] = self.add_inst(name="read_access_nmos_right{}".format(k),
mod=self.read_nmos)
self.connect_inst(["gnd", "Q", "RA_to_R_right{}".format(k), "gnd"])
# add read transistors
self.read_nmos_left[k] = self.add_inst(name="read_nmos_left{}".format(k),
mod=self.read_nmos)
self.connect_inst([self.r_bl_names[k], self.r_wl_names[k], "RA_to_R_left{}".format(k), "gnd"])
self.read_nmos_right[k] = self.add_inst(name="read_nmos_right{}".format(k),
mod=self.read_nmos)
self.connect_inst(["RA_to_R_right{}".format(k), self.r_wl_names[k], self.r_br_names[k], "gnd"])
def place_read_ports(self):
""" Places the read ports in the bit cell """
# define read transistor variables as empty arrays based on the number of read ports
self.rwl_positions = [None] * self.num_r_ports
self.rbl_positions = [None] * self.num_r_ports
self.rbr_positions = [None] * self.num_r_ports
# calculate offset to overlap the drain of the read-access transistor with the source of the read transistor
overlap_offset = self.read_nmos.get_pin("D").cx() - self.read_nmos.get_pin("S").cx()
# iterate over the number of read ports
for k in range(0,self.num_r_ports):
# calculate transistor offsets
left_read_transistor_xpos = self.left_building_edge \
- (k+1)*self.read_port_spacing \
- (k+1)*self.read_port_width
right_read_transistor_xpos = self.right_building_edge \
+ (k+1)*self.read_port_spacing \
+ k*self.read_port_width
# add read-access transistors
self.read_access_nmos_left[k].place(offset=[left_read_transistor_xpos+overlap_offset, self.port_ypos])
self.read_access_nmos_right[k].place(offset=[right_read_transistor_xpos, self.port_ypos])
# add read transistors
self.read_nmos_left[k].place(offset=[left_read_transistor_xpos, self.port_ypos])
self.read_nmos_right[k].place(offset=[right_read_transistor_xpos+overlap_offset, self.port_ypos])
# add pin for RWL
rwl_ypos = rwwl_ypos = self.rowline_offset - self.num_rw_ports*self.rowline_spacing - self.num_w_ports*self.rowline_spacing - k*self.rowline_spacing
self.rwl_positions[k] = vector(0, rwl_ypos)
self.add_layout_pin_rect_center(text=self.r_wl_names[k],
layer="metal1",
offset=self.rwl_positions[k],
width=self.width,
height=self.m1_width)
# add pins for RBL and RBR
rbl_xpos = left_read_transistor_xpos - self.bitline_offset + 0.5*self.m2_width
self.rbl_positions[k] = vector(rbl_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.r_bl_names[k],
layer="metal2",
offset=self.rbl_positions[k],
height=self.height)
rbr_xpos = right_read_transistor_xpos + self.read_port_width + self.bitline_offset - 0.5*self.m2_width
self.rbr_positions[k] = vector(rbr_xpos, self.center_ypos)
self.add_layout_pin_rect_center(text=self.r_br_names[k],
layer="metal2",
offset=self.rbr_positions[k],
height=self.height)
def route_wordlines(self):
""" Routes gate of transistors to their respective wordlines """
port_transistors = []
for k in range(self.num_rw_ports):
port_transistors.append(self.readwrite_nmos_left[k])
port_transistors.append(self.readwrite_nmos_right[k])
for k in range(self.num_w_ports):
port_transistors.append(self.write_nmos_left[k])
port_transistors.append(self.write_nmos_right[k])
for k in range(self.num_r_ports):
port_transistors.append(self.read_nmos_left[k])
port_transistors.append(self.read_nmos_right[k])
wl_positions = []
for k in range(self.num_rw_ports):
wl_positions.append(self.rwwl_positions[k])
wl_positions.append(self.rwwl_positions[k])
for k in range(self.num_w_ports):
wl_positions.append(self.wwl_positions[k])
wl_positions.append(self.wwl_positions[k])
for k in range(self.num_r_ports):
wl_positions.append(self.rwl_positions[k])
wl_positions.append(self.rwl_positions[k])
for k in range(2*self.total_ports):
gate_offset = port_transistors[k].get_pin("G").bc()
port_contact_offset = gate_offset + vector(0, -self.gate_contact_yoffset + self.poly_extend_active)
wl_contact_offset = vector(gate_offset.x, wl_positions[k].y)
# first transistor on either side of the cross coupled inverters does not need to route to wordline on metal2
if (k == 0) or (k == 1):
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=port_contact_offset)
self.add_path("poly", [gate_offset, port_contact_offset])
self.add_path("metal1", [port_contact_offset, wl_contact_offset])
else:
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=port_contact_offset)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=port_contact_offset)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=wl_contact_offset,
directions=("H","H"))
self.add_path("poly", [gate_offset, port_contact_offset])
self.add_path("metal2", [port_contact_offset, wl_contact_offset])
def route_bitlines(self):
""" Routes read/write transistors to their respective bitlines """
left_port_transistors = []
right_port_transistors = []
for k in range(self.num_rw_ports):
left_port_transistors.append(self.readwrite_nmos_left[k])
right_port_transistors.append(self.readwrite_nmos_right[k])
for k in range(self.num_w_ports):
left_port_transistors.append(self.write_nmos_left[k])
right_port_transistors.append(self.write_nmos_right[k])
for k in range(self.num_r_ports):
left_port_transistors.append(self.read_nmos_left[k])
right_port_transistors.append(self.read_nmos_right[k])
bl_positions = []
br_positions = []
for k in range(self.num_rw_ports):
bl_positions.append(self.rwbl_positions[k])
br_positions.append(self.rwbr_positions[k])
for k in range(self.num_w_ports):
bl_positions.append(self.wbl_positions[k])
br_positions.append(self.wbr_positions[k])
for k in range(self.num_r_ports):
bl_positions.append(self.rbl_positions[k])
br_positions.append(self.rbr_positions[k])
for k in range(self.total_ports):
port_contact_offest = left_port_transistors[k].get_pin("S").center()
bl_offset = vector(bl_positions[k].x, port_contact_offest.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=port_contact_offest)
self.add_path("metal2", [port_contact_offest, bl_offset], width=contact.m1m2.height)
for k in range(self.total_ports):
port_contact_offest = right_port_transistors[k].get_pin("D").center()
br_offset = vector(br_positions[k].x, port_contact_offest.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=port_contact_offest)
self.add_path("metal2", [port_contact_offest, br_offset], width=contact.m1m2.height)
def route_supply(self):
""" Route inverter nmos and read-access nmos to gnd. Route inverter pmos to vdd. """
# route inverter nmos and read-access nmos to gnd
nmos_contact_positions = []
nmos_contact_positions.append(self.inverter_nmos_left.get_pin("S").center())
nmos_contact_positions.append(self.inverter_nmos_right.get_pin("D").center())
for k in range(self.num_r_ports):
nmos_contact_positions.append(self.read_access_nmos_left[k].get_pin("D").center())
nmos_contact_positions.append(self.read_access_nmos_right[k].get_pin("S").center())
for position in nmos_contact_positions:
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=position)
if position.x > 0:
contact_correct = 0.5*contact.m1m2.height
else:
contact_correct = -0.5*contact.m1m2.height
supply_offset = vector(position.x + contact_correct, self.gnd_position.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=supply_offset,
directions=("H","H"))
self.add_path("metal2", [position, supply_offset])
# route inverter pmos to vdd
vdd_pos_left = vector(self.inverter_nmos_left.get_pin("S").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_left.get_pin("S").uc(), vdd_pos_left])
vdd_pos_right = vector(self.inverter_nmos_right.get_pin("D").uc().x, self.vdd_position.y)
self.add_path("metal1", [self.inverter_pmos_right.get_pin("D").uc(), vdd_pos_right])
def route_readwrite_access(self):
""" Routes read/write transistors to the storage component of the bitcell """
for k in range(self.num_rw_ports):
mid = vector(self.readwrite_nmos_left[k].get_pin("D").uc().x, self.cross_couple_lower_ypos)
Q_pos = vector(self.inverter_nmos_left.get_pin("D").lx(), self.cross_couple_lower_ypos)
self.add_path("metal1", [self.readwrite_nmos_left[k].get_pin("D").uc(), mid, Q_pos])
mid = vector(self.readwrite_nmos_right[k].get_pin("S").uc().x, self.cross_couple_lower_ypos)
Q_bar_pos = vector(self.inverter_nmos_right.get_pin("S").rx(), self.cross_couple_lower_ypos)
self.add_path("metal1", [self.readwrite_nmos_right[k].get_pin("S").uc(), mid, Q_bar_pos])
def route_write_access(self):
""" Routes read/write transistors to the storage component of the bitcell """
for k in range(self.num_w_ports):
mid = vector(self.write_nmos_left[k].get_pin("D").uc().x, self.cross_couple_lower_ypos)
Q_pos = vector(self.inverter_nmos_left.get_pin("D").lx(), self.cross_couple_lower_ypos)
self.add_path("metal1", [self.write_nmos_left[k].get_pin("D").uc(), mid, Q_pos])
mid = vector(self.write_nmos_right[k].get_pin("S").uc().x, self.cross_couple_lower_ypos)
Q_bar_pos = vector(self.inverter_nmos_right.get_pin("S").rx(), self.cross_couple_lower_ypos)
self.add_path("metal1", [self.write_nmos_right[k].get_pin("S").uc(), mid, Q_bar_pos])
def route_read_access(self):
""" Routes read access transistors to the storage component of the bitcell """
# add poly to metal1 contacts for gates of the inverters
left_storage_contact = vector(self.inverter_nmos_left.get_pin("G").lc().x - self.poly_to_polycontact - 0.5*contact.poly.width, self.cross_couple_upper_ypos)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=left_storage_contact,
directions=("H","H"))
right_storage_contact = vector(self.inverter_nmos_right.get_pin("G").rc().x + self.poly_to_polycontact + 0.5*contact.poly.width, self.cross_couple_upper_ypos)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=right_storage_contact,
directions=("H","H"))
inverter_gate_offset_left = vector(self.inverter_nmos_left.get_pin("G").lc().x, self.cross_couple_upper_ypos)
self.add_path("poly", [left_storage_contact, inverter_gate_offset_left])
inverter_gate_offset_right = vector(self.inverter_nmos_right.get_pin("G").rc().x, self.cross_couple_upper_ypos)
self.add_path("poly", [right_storage_contact, inverter_gate_offset_right])
# add poly to metal1 contacts for gates of read-access transistors
# route from read-access contacts to inverter contacts on metal1
for k in range(self.num_r_ports):
port_contact_offset = self.read_access_nmos_left[k].get_pin("G").uc() + vector(0, self.gate_contact_yoffset - self.poly_extend_active)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=port_contact_offset)
self.add_path("poly", [self.read_access_nmos_left[k].get_pin("G").uc(), port_contact_offset])
mid = vector(self.read_access_nmos_left[k].get_pin("G").uc().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [port_contact_offset, mid, left_storage_contact])
port_contact_offset = self.read_access_nmos_right[k].get_pin("G").uc() + vector(0, self.gate_contact_yoffset - self.poly_extend_active)
self.add_via_center(layers=("poly", "contact", "metal1"),
offset=port_contact_offset)
self.add_path("poly", [self.read_access_nmos_right[k].get_pin("G").uc(), port_contact_offset])
mid = vector(self.read_access_nmos_right[k].get_pin("G").uc().x, self.cross_couple_upper_ypos)
self.add_path("metal1", [port_contact_offset, mid, right_storage_contact])
def extend_well(self):
"""
Connects wells between ptx modules and places well contacts"""
# extend pwell to encompass entire nmos region of the cell up to the height of the tallest nmos transistor
max_nmos_well_height = max(self.inverter_nmos.cell_well_height,
self.readwrite_nmos.cell_well_height,
self.write_nmos.cell_well_height,
self.read_nmos.cell_well_height)
well_height = max_nmos_well_height + self.port_ypos - self.well_enclose_active - self.gnd_position.y
offset = vector(self.leftmost_xpos, self.botmost_ypos)
self.add_rect(layer="pwell",
offset=offset,
width=self.width,
height=well_height)
# extend nwell to encompass inverter_pmos
# calculate offset of the left pmos well
inverter_well_xpos = -(self.inverter_nmos.active_width + 0.5*self.inverter_to_inverter_spacing) - self.well_enclose_active
inverter_well_ypos = self.inverter_nmos_ypos + self.inverter_nmos.active_height + self.inverter_gap - self.well_enclose_active
# calculate width of the two combined nwells
# calculate height to encompass nimplant connected to vdd
well_width = 2*(self.inverter_nmos.active_width + 0.5*self.inverter_to_inverter_spacing) + 2*self.well_enclose_active
well_height = self.vdd_position.y - inverter_well_ypos + self.well_enclose_active + drc["minwidth_tx"]
offset = [inverter_well_xpos,inverter_well_ypos]
self.add_rect(layer="nwell",
offset=offset,
width=well_width,
height=well_height)
# add well contacts
# connect pimplants to gnd
offset = vector(0, self.gnd_position.y)
self.add_via_center(layers=("active", "contact", "metal1"),
offset=offset,
directions=("H","H"),
implant_type="p",
well_type="p")
# connect nimplants to vdd
offset = vector(0, self.vdd_position.y)
self.add_via_center(layers=("active", "contact", "metal1"),
offset=offset,
directions=("H","H"),
implant_type="n",
well_type="n")
def list_bitcell_pins(self, col, row):
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """
bitcell_pins = []
for port in range(self.total_ports):
bitcell_pins.append("bl{0}_{1}".format(port,col))
bitcell_pins.append("br{0}_{1}".format(port,col))
for port in range(self.total_ports):
bitcell_pins.append("wl{0}_{1}".format(port,row))
bitcell_pins.append("vdd")
bitcell_pins.append("gnd")
return bitcell_pins
def list_all_wl_names(self):
""" Creates a list of all wordline pin names """
wordline_names = self.rw_wl_names + self.w_wl_names + self.r_wl_names
return wordline_names
def list_all_bitline_names(self):
""" Creates a list of all bitline pin names (both bl and br) """
bitline_pins = []
for port in range(self.total_ports):
bitline_pins.append("bl{0}".format(port))
bitline_pins.append("br{0}".format(port))
return bitline_pins
def list_all_bl_names(self):
""" Creates a list of all bl pins names """
bl_pins = self.rw_bl_names + self.w_bl_names + self.r_bl_names
return bl_pins
def list_all_br_names(self):
""" Creates a list of all br pins names """
br_pins = self.rw_br_names + self.w_br_names + self.r_br_names
return br_pins
def route_rbc_short(self):
""" route the short from Q_bar to gnd necessary for the replica bitcell """
Q_bar_pos = self.inverter_pmos_right.get_pin("S").center()
vdd_pos = self.inverter_pmos_right.get_pin("D").center()
self.add_path("metal1", [Q_bar_pos, vdd_pos])
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
#Internal loads due to port configs are halved. This is to account for the size already being halved
#for stacked TXs, but internal loads do not see this size estimation.
write_port_load = self.num_w_ports*logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])/2
read_port_load = self.num_r_ports/2 #min size NMOS gate load
total_load = load+read_port_load+write_port_load
return logical_effort.logical_effort('bitline', size, cin, load+read_port_load, parasitic_delay, False)
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""
from tech import spice
leakage = spice["bitcell_leakage"]
dynamic = 0 #temporary
total_power = self.return_power(dynamic, leakage)
return total_power
def get_wl_cin(self):
"""Return the relative capacitance of the access transistor gates"""
#pbitcell uses the different sizing for the port access tx's. Not accounted for in this model.
access_tx_cin = self.readwrite_nmos.get_cin()
return 2*access_tx_cin