Merge remote-tracking branch 'private/dev' into dev

This commit is contained in:
Matt Guthaus 2019-04-17 15:18:36 -07:00
commit e0b0661273
23 changed files with 399 additions and 271 deletions

View File

@ -4,13 +4,13 @@
[![License: BSD 3-clause](./images/license_badge.svg)](./LICENSE)
Master:
[![Pipeline Status](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/master/pipeline.svg?private_token=ynB6rSFLzvKUseoBPcwV)](https://github.com/VLSIDA/OpenRAM/commits/master)
![Coverage](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/master/coverage.svg?private_token=ynB6rSFLzvKUseoBPcwV)
[![Pipeline Status](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/master/pipeline.svg)](https://github.com/VLSIDA/OpenRAM/commits/master)
![Coverage](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/master/coverage.svg)
[![Download](./images/download-stable-blue.svg)](https://github.com/VLSIDA/OpenRAM/archive/master.zip)
Dev:
[![Pipeline Status](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/dev/pipeline.svg?private_token=ynB6rSFLzvKUseoBPcwV)](https://github.com/VLSIDA/OpenRAM/commits/dev)
![Coverage](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/dev/coverage.svg?private_token=ynB6rSFLzvKUseoBPcwV)
[![Pipeline Status](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/dev/pipeline.svg)](https://github.com/VLSIDA/OpenRAM/commits/dev)
![Coverage](https://scone.soe.ucsc.edu:8888/mrg/OpenRAM/badges/dev/coverage.svg)
[![Download](./images/download-unstable-blue.svg)](https://github.com/VLSIDA/OpenRAM/archive/dev.zip)
An open-source static random access memory (SRAM) compiler.

View File

@ -235,13 +235,8 @@ class spice():
modeling it as a resistance driving a capacitance
"""
swing_factor = abs(math.log(1-swing)) # time constant based on swing
proc,vdd,temp = corner
#FIXME: type of delay is needed to know which process to use.
proc_mult = max(self.get_process_delay_factor(proc))
volt_mult = self.get_voltage_delay_factor(vdd)
temp_mult = self.get_temp_delay_factor(temp)
delay = swing_factor * r * c #c is in ff and delay is in fs
delay = delay * proc_mult * volt_mult * temp_mult
delay = self.apply_corners_analytically(delay, corner)
delay = delay * 0.001 #make the unit to ps
# Output slew should be linear to input slew which is described
@ -254,6 +249,15 @@ class spice():
slew = delay * 0.6 * 2 + 0.005 * slew
return delay_data(delay = delay, slew = slew)
def apply_corners_analytically(self, delay, corner):
"""Multiply delay by corner factors"""
proc,vdd,temp = corner
#FIXME: type of delay is needed to know which process to use.
proc_mult = max(self.get_process_delay_factor(proc))
volt_mult = self.get_voltage_delay_factor(vdd)
temp_mult = self.get_temp_delay_factor(temp)
return delay * proc_mult * volt_mult * temp_mult
def get_process_delay_factor(self, proc):
"""Returns delay increase estimate based off process
Currently does +/-10 for fast/slow corners."""

View File

@ -2,6 +2,7 @@ import design
import debug
import utils
from tech import GDS,layer,parameter,drc
import logical_effort
class bitcell(design.design):
"""
@ -23,19 +24,12 @@ class bitcell(design.design):
self.width = bitcell.width
self.height = bitcell.height
self.pin_map = bitcell.pin_map
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
# delay of bit cell is not like a driver(from WL)
# so the slew used should be 0
# it should not be slew dependent?
# because the value is there
# the delay is only over half transsmission gate
from tech import spice
r = spice["min_tx_r"]*3
c_para = spice["min_tx_drain_c"]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
return result
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
return logical_effort.logical_effort('bitline', size, cin, load, parasitic_delay, False)
def list_bitcell_pins(self, col, row):
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """

View File

@ -2,6 +2,7 @@ import design
import debug
import utils
from tech import GDS,layer,parameter,drc
import logical_effort
class bitcell_1rw_1r(design.design):
"""
@ -25,18 +26,12 @@ class bitcell_1rw_1r(design.design):
self.pin_map = bitcell_1rw_1r.pin_map
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
# delay of bit cell is not like a driver(from WL)
# so the slew used should be 0
# it should not be slew dependent?
# because the value is there
# the delay is only over half transsmission gate
from tech import spice
r = spice["min_tx_r"]*3
c_para = spice["min_tx_drain_c"]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
return result
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
read_port_load = 0.5 #min size NMOS gate load
return logical_effort.logical_effort('bitline', size, cin, load+read_port_load, parasitic_delay, False)
def list_bitcell_pins(self, col, row):
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """
bitcell_pins = ["bl0_{0}".format(col),

View File

@ -2,6 +2,7 @@ import design
import debug
import utils
from tech import GDS,layer,parameter,drc
import logical_effort
class bitcell_1w_1r(design.design):
"""
@ -25,18 +26,12 @@ class bitcell_1w_1r(design.design):
self.pin_map = bitcell_1w_1r.pin_map
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
# delay of bit cell is not like a driver(from WL)
# so the slew used should be 0
# it should not be slew dependent?
# because the value is there
# the delay is only over half transsmission gate
from tech import spice
r = spice["min_tx_r"]*3
c_para = spice["min_tx_drain_c"]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
return result
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
read_port_load = 0.5 #min size NMOS gate load
return logical_effort.logical_effort('bitline', size, cin, load+read_port_load, parasitic_delay, False)
def list_bitcell_pins(self, col, row):
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """
bitcell_pins = ["bl0_{0}".format(col),

View File

@ -5,6 +5,7 @@ from tech import drc, parameter, spice
from vector import vector
from ptx import ptx
from globals import OPTS
import logical_effort
class pbitcell(design.design):
"""
@ -867,12 +868,16 @@ class pbitcell(design.design):
self.add_path("metal1", [Q_bar_pos, vdd_pos])
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
#FIXME: Delay copied exactly over from bitcell
from tech import spice
r = spice["min_tx_r"]*3
c_para = spice["min_tx_drain_c"]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
return result
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
#Internal loads due to port configs are halved. This is to account for the size already being halved
#for stacked TXs, but internal loads do not see this size estimation.
write_port_load = self.num_w_ports*logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])/2
read_port_load = self.num_r_ports/2 #min size NMOS gate load
total_load = load+read_port_load+write_port_load
return logical_effort.logical_effort('bitline', size, cin, load+read_port_load, parasitic_delay, False)
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""

View File

@ -9,6 +9,7 @@ import utils
from globals import OPTS
from .simulation import simulation
from .measurements import *
import logical_effort
class delay(simulation):
"""Functions to measure the delay and power of an SRAM at a given address and
@ -904,8 +905,9 @@ class delay(simulation):
self.create_measurement_names()
power = self.analytical_power(slews, loads)
port_data = self.get_empty_measure_data_dict()
relative_loads = [logical_effort.convert_farad_to_relative_c(c_farad) for c_farad in loads]
for slew in slews:
for load in loads:
for load in relative_loads:
self.set_load_slew(load,slew)
bank_delay = self.sram.analytical_delay(self.corner, self.slew,self.load)
for port in self.all_ports:

View File

@ -9,6 +9,7 @@ class logical_effort():
beta = parameter["beta"]
min_inv_cin = 1+beta
pinv=parameter["min_inv_para_delay"]
tau = parameter['le_tau']
def __init__(self, name, size, cin, cout, parasitic, out_is_rise=True):
self.name = name
@ -30,30 +31,44 @@ class logical_effort():
def get_stage_effort(self):
return self.logical_effort*self.eletrical_effort
def get_parasitic_delay(self, pinv):
return pinv * self.parasitic_scale
def get_parasitic_delay(self):
return logical_effort.pinv * self.parasitic_scale
def get_stage_delay(self, pinv):
return self.get_stage_effort()+self.get_parasitic_delay(pinv)
def get_stage_delay(self):
return self.get_stage_effort()+self.get_parasitic_delay()
def calculate_delays(stage_effort_list, pinv):
def get_absolute_delay(self):
return logical_effort.tau*self.get_stage_delay()
def calculate_delays(stage_effort_list):
"""Convert stage effort objects to list of delay values"""
return [stage.get_stage_delay(pinv) for stage in stage_effort_list]
return [stage.get_stage_delay() for stage in stage_effort_list]
def calculate_relative_delay(stage_effort_list, pinv=parameter["min_inv_para_delay"]):
def calculate_relative_delay(stage_effort_list):
"""Calculates the total delay of a given delay path made of a list of logical effort objects."""
total_rise_delay, total_fall_delay = calculate_relative_rise_fall_delays(stage_effort_list, pinv)
total_rise_delay, total_fall_delay = calculate_relative_rise_fall_delays(stage_effort_list)
return total_rise_delay + total_fall_delay
def calculate_absolute_delay(stage_effort_list):
"""Calculates the total delay of a given delay path made of a list of logical effort objects."""
total_delay = 0
for stage in stage_effort_list:
total_delay+=stage.get_absolute_delay()
return total_delay
def calculate_relative_rise_fall_delays(stage_effort_list, pinv=parameter["min_inv_para_delay"]):
def calculate_relative_rise_fall_delays(stage_effort_list):
"""Calculates the rise/fall delays of a given delay path made of a list of logical effort objects."""
debug.info(2, "Calculating rise/fall relative delays")
total_rise_delay, total_fall_delay = 0,0
for stage in stage_effort_list:
debug.info(2, stage)
if stage.is_rise:
total_rise_delay += stage.get_stage_delay(pinv)
total_rise_delay += stage.get_stage_delay()
else:
total_fall_delay += stage.get_stage_delay(pinv)
total_fall_delay += stage.get_stage_delay()
return total_rise_delay, total_fall_delay
def convert_farad_to_relative_c(c_farad):
"""Converts capacitance in Femto-Farads to relative capacitance."""
return c_farad*parameter['cap_relative_per_ff']

View File

@ -18,15 +18,18 @@ class model_check(delay):
"""
def __init__(self, sram, spfile, corner):
def __init__(self, sram, spfile, corner, custom_delaychain=False):
delay.__init__(self,sram,spfile,corner)
self.period = tech.spice["feasible_period"]
self.create_data_names()
self.custom_delaychain=custom_delaychain
def create_data_names(self):
self.wl_meas_name, self.wl_model_name = "wl_measures", "wl_model"
self.sae_meas_name, self.sae_model_name = "sae_measures", "sae_model"
self.wl_slew_name, self.sae_slew_name = "wl_slews", "sae_slews"
self.bl_meas_name, self.bl_slew_name = "bl_measures", "bl_slews"
self.power_name = "total_power"
def create_measurement_names(self):
"""Create measurement names. The names themselves currently define the type of measurement"""
@ -34,21 +37,33 @@ class model_check(delay):
wl_en_driver_delay_names = ["delay_wl_en_dvr_{}".format(stage) for stage in range(1,self.get_num_wl_en_driver_stages())]
wl_driver_delay_names = ["delay_wl_dvr_{}".format(stage) for stage in range(1,self.get_num_wl_driver_stages())]
sen_driver_delay_names = ["delay_sen_dvr_{}".format(stage) for stage in range(1,self.get_num_sen_driver_stages())]
dc_delay_names = ["delay_delay_chain_stage_{}".format(stage) for stage in range(1,self.get_num_delay_stages()+1)]
if self.custom_delaychain:
dc_delay_names = ['delay_dc_out_final']
else:
dc_delay_names = ["delay_delay_chain_stage_{}".format(stage) for stage in range(1,self.get_num_delay_stages()+1)]
self.wl_delay_meas_names = wl_en_driver_delay_names+["delay_wl_en", "delay_wl_bar"]+wl_driver_delay_names+["delay_wl"]
self.rbl_delay_meas_names = ["delay_gated_clk_nand", "delay_delay_chain_in"]+dc_delay_names
self.sae_delay_meas_names = ["delay_pre_sen"]+sen_driver_delay_names+["delay_sen"]
# if self.custom_delaychain:
# self.delay_chain_indices = (len(self.rbl_delay_meas_names), len(self.rbl_delay_meas_names)+1)
# else:
self.delay_chain_indices = (len(self.rbl_delay_meas_names)-len(dc_delay_names), len(self.rbl_delay_meas_names))
#Create slew measurement names
wl_en_driver_slew_names = ["slew_wl_en_dvr_{}".format(stage) for stage in range(1,self.get_num_wl_en_driver_stages())]
wl_driver_slew_names = ["slew_wl_dvr_{}".format(stage) for stage in range(1,self.get_num_wl_driver_stages())]
sen_driver_slew_names = ["slew_sen_dvr_{}".format(stage) for stage in range(1,self.get_num_sen_driver_stages())]
dc_slew_names = ["slew_delay_chain_stage_{}".format(stage) for stage in range(1,self.get_num_delay_stages()+1)]
if self.custom_delaychain:
dc_slew_names = ['slew_dc_out_final']
else:
dc_slew_names = ["slew_delay_chain_stage_{}".format(stage) for stage in range(1,self.get_num_delay_stages()+1)]
self.wl_slew_meas_names = ["slew_wl_gated_clk_bar"]+wl_en_driver_slew_names+["slew_wl_en", "slew_wl_bar"]+wl_driver_slew_names+["slew_wl"]
self.rbl_slew_meas_names = ["slew_rbl_gated_clk_bar","slew_gated_clk_nand", "slew_delay_chain_in"]+dc_slew_names
self.sae_slew_meas_names = ["slew_replica_bl0", "slew_pre_sen"]+sen_driver_slew_names+["slew_sen"]
self.bitline_meas_names = ["delay_wl_to_bl", "delay_bl_to_dout"]
self.power_meas_names = ['read0_power']
def create_signal_names(self):
"""Creates list of the signal names used in the spice file along the wl and sen paths.
Names are re-harded coded here; i.e. the names are hardcoded in most of OpenRAM and are
@ -59,7 +74,10 @@ class model_check(delay):
wl_en_driver_signals = ["Xsram.Xcontrol0.Xbuf_wl_en.Zb{}_int".format(stage) for stage in range(1,self.get_num_wl_en_driver_stages())]
wl_driver_signals = ["Xsram.Xbank0.Xwordline_driver0.Xwl_driver_inv{}.Zb{}_int".format(self.wordline_row, stage) for stage in range(1,self.get_num_wl_driver_stages())]
sen_driver_signals = ["Xsram.Xcontrol0.Xbuf_s_en.Zb{}_int".format(stage) for stage in range(1,self.get_num_sen_driver_stages())]
delay_chain_signal_names = ["Xsram.Xcontrol0.Xreplica_bitline.Xdelay_chain.dout_{}".format(stage) for stage in range(1,self.get_num_delay_stages())]
if self.custom_delaychain:
delay_chain_signal_names = []
else:
delay_chain_signal_names = ["Xsram.Xcontrol0.Xreplica_bitline.Xdelay_chain.dout_{}".format(stage) for stage in range(1,self.get_num_delay_stages())]
self.wl_signal_names = ["Xsram.Xcontrol0.gated_clk_bar"]+\
wl_en_driver_signals+\
@ -70,17 +88,31 @@ class model_check(delay):
self.rbl_en_signal_names = pre_delay_chain_names+\
delay_chain_signal_names+\
["Xsram.Xcontrol0.Xreplica_bitline.delayed_en"]
self.sae_signal_names = ["Xsram.Xcontrol0.Xreplica_bitline.bl0_0", "Xsram.Xcontrol0.pre_s_en"]+\
sen_driver_signals+\
["Xsram.s_en0"]
dout_name = "{0}{1}_{2}".format(self.dout_name,"{}",self.probe_data) #Empty values are the port and probe data bit
self.bl_signal_names = ["Xsram.Xbank0.wl_{}".format(self.wordline_row),\
"Xsram.Xbank0.bl_{}".format(self.bitline_column),\
dout_name]
def create_measurement_objects(self):
"""Create the measurements used for read and write ports"""
self.create_wordline_measurement_objects()
self.create_sae_measurement_objects()
self.all_measures = self.wl_meas_objs+self.sae_meas_objs
self.create_wordline_meas_objs()
self.create_sae_meas_objs()
self.create_bl_meas_objs()
self.create_power_meas_objs()
self.all_measures = self.wl_meas_objs+self.sae_meas_objs+self.bl_meas_objs+self.power_meas_objs
def create_wordline_measurement_objects(self):
def create_power_meas_objs(self):
"""Create power measurement object. Only one."""
self.power_meas_objs = []
self.power_meas_objs.append(power_measure(self.power_meas_names[0], "FALL", measure_scale=1e3))
def create_wordline_meas_objs(self):
"""Create the measurements to measure the wordline path from the gated_clk_bar signal"""
self.wl_meas_objs = []
trig_dir = "RISE"
@ -102,7 +134,19 @@ class model_check(delay):
targ_dir = temp_dir
self.wl_meas_objs.append(slew_measure(self.wl_slew_meas_names[-1], self.wl_signal_names[-1], trig_dir, measure_scale=1e9))
def create_sae_measurement_objects(self):
def create_bl_meas_objs(self):
"""Create the measurements to measure the bitline to dout, static stages"""
#Bitline has slightly different measurements, objects appends hardcoded.
self.bl_meas_objs = []
trig_dir, targ_dir = "RISE", "FALL" #Only check read 0
self.bl_meas_objs.append(delay_measure(self.bitline_meas_names[0],
self.bl_signal_names[0],
self.bl_signal_names[-1],
trig_dir,
targ_dir,
measure_scale=1e9))
def create_sae_meas_objs(self):
"""Create the measurements to measure the sense amp enable path from the gated_clk_bar signal. The RBL splits this path into two."""
self.sae_meas_objs = []
@ -123,6 +167,13 @@ class model_check(delay):
temp_dir = trig_dir
trig_dir = targ_dir
targ_dir = temp_dir
if self.custom_delaychain: #Hack for custom delay chains
self.sae_meas_objs[-2] = delay_measure(self.rbl_delay_meas_names[-1],
self.rbl_en_signal_names[-2],
self.rbl_en_signal_names[-1],
"RISE",
"RISE",
measure_scale=1e9)
self.sae_meas_objs.append(slew_measure(self.rbl_slew_meas_names[-1],
self.rbl_en_signal_names[-1],
trig_dir,
@ -131,7 +182,6 @@ class model_check(delay):
#Add measurements from rbl_out to sae. Trigger directions do not invert from previous stage due to RBL.
trig_dir = "FALL"
targ_dir = "RISE"
#Add measurements from gated_clk_bar to RBL
for i in range(1, len(self.sae_signal_names)):
self.sae_meas_objs.append(delay_measure(self.sae_delay_meas_names[i-1],
self.sae_signal_names[i-1],
@ -169,10 +219,22 @@ class model_check(delay):
or port to port (time delays)"""
#Return value is intended to match the delay measure format: trig_td, targ_td, vdd, port
#Assuming only read 0 for now
if not (type(measure_obj) is delay_measure or type(measure_obj) is slew_measure):
debug.info(3,"Power measurement={}".format(measure_obj))
if (type(measure_obj) is delay_measure or type(measure_obj) is slew_measure):
meas_cycle_delay = self.cycle_times[self.measure_cycles[port]["read0"]] + self.period/2
return (meas_cycle_delay, meas_cycle_delay, self.vdd_voltage, port)
elif type(measure_obj) is power_measure:
return self.get_power_measure_variants(port, measure_obj, "read")
else:
debug.error("Measurement not recognized by the model checker.",1)
meas_cycle_delay = self.cycle_times[self.measure_cycles[port]["read0"]] + self.period/2
return (meas_cycle_delay, meas_cycle_delay, self.vdd_voltage, port)
def get_power_measure_variants(self, port, power_obj, operation):
"""Get the measurement values that can either vary port to port (time delays)"""
#Return value is intended to match the power measure format: t_initial, t_final, port
t_initial = self.cycle_times[self.measure_cycles[port]["read0"]]
t_final = self.cycle_times[self.measure_cycles[port]["read0"]+1]
return (t_initial, t_final, port)
def write_measures_read_port(self, port):
"""
@ -186,7 +248,8 @@ class model_check(delay):
def get_measurement_values(self, meas_objs, port):
"""Gets the delays and slews from a specified port from the spice output file and returns them as lists."""
delay_meas_list = []
slew_meas_list = []
slew_meas_list = []
power_meas_list=[]
for measure in meas_objs:
measure_value = measure.retrieve_measure(port=port)
if type(measure_value) != float:
@ -195,9 +258,11 @@ class model_check(delay):
delay_meas_list.append(measure_value)
elif type(measure)is slew_measure:
slew_meas_list.append(measure_value)
elif type(measure)is power_measure:
power_meas_list.append(measure_value)
else:
debug.error("Measurement object not recognized.",1)
return delay_meas_list, slew_meas_list
return delay_meas_list, slew_meas_list,power_meas_list
def run_delay_simulation(self):
"""
@ -213,6 +278,9 @@ class model_check(delay):
wl_slew_result = [[] for i in self.all_ports]
sae_delay_result = [[] for i in self.all_ports]
sae_slew_result = [[] for i in self.all_ports]
bl_delay_result = [[] for i in self.all_ports]
bl_slew_result = [[] for i in self.all_ports]
power_result = [[] for i in self.all_ports]
# Checking from not data_value to data_value
self.write_delay_stimulus()
@ -221,9 +289,11 @@ class model_check(delay):
#Retrieve the results from the output file
for port in self.targ_read_ports:
#Parse and check the voltage measurements
wl_delay_result[port], wl_slew_result[port] = self.get_measurement_values(self.wl_meas_objs, port)
sae_delay_result[port], sae_slew_result[port] = self.get_measurement_values(self.sae_meas_objs, port)
return (True,wl_delay_result, sae_delay_result, wl_slew_result, sae_slew_result)
wl_delay_result[port], wl_slew_result[port],_ = self.get_measurement_values(self.wl_meas_objs, port)
sae_delay_result[port], sae_slew_result[port],_ = self.get_measurement_values(self.sae_meas_objs, port)
bl_delay_result[port], bl_slew_result[port],_ = self.get_measurement_values(self.bl_meas_objs, port)
_,__,power_result[port] = self.get_measurement_values(self.power_meas_objs, port)
return (True,wl_delay_result, sae_delay_result, wl_slew_result, sae_slew_result, bl_delay_result, bl_slew_result, power_result)
def get_model_delays(self, port):
"""Get model delays based on port. Currently assumes single RW port."""
@ -306,23 +376,28 @@ class model_check(delay):
self.targ_read_ports = [read_port]
self.targ_write_ports = [self.write_ports[0]]
debug.info(1,"Model test: corner {}".format(self.corner))
(success, wl_delays, sae_delays, wl_slews, sae_slews)=self.run_delay_simulation()
(success, wl_delays, sae_delays, wl_slews, sae_slews, bl_delays, bl_slews, powers)=self.run_delay_simulation()
debug.check(success, "Model measurements Failed: period={}".format(self.period))
wl_model_delays, sae_model_delays = self.get_model_delays(read_port)
debug.info(1,"Measured Wordline delays (ns):\n\t {}".format(wl_delays[read_port]))
debug.info(1,"Wordline model delays:\n\t {}".format(wl_model_delays))
debug.info(1,"Measured Wordline slews:\n\t {}".format(wl_slews[read_port]))
debug.info(1,"Measured SAE delays (ns):\n\t {}".format(sae_delays[read_port]))
debug.info(1,"SAE model delays:\n\t {}".format(sae_model_delays))
debug.info(1,"Measured SAE slews:\n\t {}".format(sae_slews[read_port]))
debug.info(1,"Measured Bitline delays (ns):\n\t {}".format(bl_delays[read_port]))
data_dict[self.wl_meas_name] = wl_delays[read_port]
data_dict[self.wl_model_name] = wl_model_delays
data_dict[self.sae_meas_name] = sae_delays[read_port]
data_dict[self.sae_model_name] = sae_model_delays
data_dict[self.wl_slew_name] = wl_slews[read_port]
data_dict[self.sae_slew_name] = sae_slews[read_port]
data_dict[self.bl_meas_name] = bl_delays[read_port]
data_dict[self.power_name] = powers[read_port]
if not OPTS.use_tech_delay_chain_size: #Model is not used in this case
wl_model_delays, sae_model_delays = self.get_model_delays(read_port)
debug.info(1,"Wordline model delays:\n\t {}".format(wl_model_delays))
debug.info(1,"SAE model delays:\n\t {}".format(sae_model_delays))
data_dict[self.wl_model_name] = wl_model_delays
data_dict[self.sae_model_name] = sae_model_delays
#Some evaluations of the model and measured values
# debug.info(1, "Comparing wordline measurements and model.")
@ -337,11 +412,17 @@ class model_check(delay):
name_dict = {}
#Signal names are more descriptive than the measurement names, first value trimmed to match size of measurements names.
name_dict[self.wl_meas_name] = self.wl_signal_names[1:]
name_dict[self.wl_model_name] = name_dict["wl_measures"] #model uses same names as measured.
name_dict[self.sae_meas_name] = self.rbl_en_signal_names[1:]+self.sae_signal_names[1:]
name_dict[self.sae_model_name] = name_dict["sae_measures"]
name_dict[self.wl_slew_name] = self.wl_slew_meas_names
name_dict[self.sae_slew_name] = self.rbl_slew_meas_names+self.sae_slew_meas_names
name_dict[self.bl_meas_name] = self.bitline_meas_names[0:1]
name_dict[self.power_name] = self.power_meas_names
#name_dict[self.wl_slew_name] = self.wl_slew_meas_names
if not OPTS.use_tech_delay_chain_size:
name_dict[self.wl_model_name] = name_dict["wl_measures"] #model uses same names as measured.
name_dict[self.sae_model_name] = name_dict["sae_measures"]
return name_dict

View File

@ -1215,37 +1215,39 @@ class bank(design.design):
offset=control_pos,
rotate=90)
def analytical_delay(self, corner, slew, load):
""" return analytical delay of the bank"""
results = []
decoder_delay = self.row_decoder.analytical_delay(corner, slew, self.wordline_driver.input_load())
word_driver_delay = self.wordline_driver.analytical_delay(corner,
decoder_delay.slew,
self.bitcell_array.input_load())
def analytical_delay(self, corner, slew, load, port):
""" return analytical delay of the bank. This will track the clock to output path"""
#FIXME: This delay is determined in the control logic. Should be moved here.
# word_driver_delay = self.wordline_driver.analytical_delay(corner,
# slew,
# self.bitcell_array.input_load())
#FIXME: Array delay is the same for every port.
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_delay.slew)
word_driver_slew = 0
if self.words_per_row > 1:
bitline_ext_load = self.column_mux_array[port].get_drain_cin()
else:
bitline_ext_load = self.sense_amp_array.get_drain_cin()
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_slew, bitline_ext_load)
bitcell_array_slew = 0
#This also essentially creates the same delay for each port. Good structure, no substance
for port in self.all_ports:
if self.words_per_row > 1:
column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
bitcell_array_delay.slew,
self.sense_amp_array.input_load())
else:
column_mux_delay = self.return_delay(delay = 0.0, slew=word_driver_delay.slew)
bl_t_data_out_delay = self.sense_amp_array.analytical_delay(corner,
column_mux_delay.slew,
self.bitcell_array.output_load())
# output load of bitcell_array is set to be only small part of bl for sense amp.
results.append(decoder_delay + word_driver_delay + bitcell_array_delay + column_mux_delay + bl_t_data_out_delay)
return results
if self.words_per_row > 1:
sa_load = self.sense_amp_array.get_drain_cin()
column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
bitcell_array_slew,
sa_load)
else:
column_mux_delay = []
column_mux_slew = 0
sense_amp_delay = self.sense_amp_array.analytical_delay(corner,
column_mux_slew,
load)
# output load of bitcell_array is set to be only small part of bl for sense amp.
return bitcell_array_delay + column_mux_delay + sense_amp_delay
def determine_wordline_stage_efforts(self, external_cout, inp_is_rise=True):
"""Get the all the stage efforts for each stage in the path within the bank clk_buf to a wordline"""
#Decoder is assumed to have settled before the negative edge of the clock. Delay model relies on this assumption

View File

@ -4,6 +4,7 @@ from tech import drc, spice
from vector import vector
from globals import OPTS
from sram_factory import factory
import logical_effort
class bitcell_array(design.design):
"""
@ -127,26 +128,18 @@ class bitcell_array(design.design):
inst = self.cell_inst[row,col]
for pin_name in ["vdd", "gnd"]:
for pin in inst.get_pins(pin_name):
self.add_power_pin(pin_name, pin.center(), 0, pin.layer)
def analytical_delay(self, corner, slew, load=0):
from tech import drc
wl_wire = self.gen_wl_wire()
wl_wire.return_delay_over_wire(slew)
wl_to_cell_delay = wl_wire.return_delay_over_wire(slew)
# hypothetical delay from cell to bl end without sense amp
bl_wire = self.gen_bl_wire()
cell_load = 2 * bl_wire.return_input_cap() # we ingore the wire r
# hence just use the whole c
bl_swing = 0.1
cell_delay = self.cell.analytical_delay(corner, wl_to_cell_delay.slew, cell_load, swing = bl_swing)
#we do not consider the delay over the wire for now
return self.return_delay(cell_delay.delay+wl_to_cell_delay.delay,
wl_to_cell_delay.slew)
self.add_power_pin(pin_name, pin.center(), 0, pin.layer)
def analytical_delay(self, corner, slew, load):
"""Returns relative delay of the bitline in the bitcell array"""
from tech import parameter
#The load being driven/drained is mostly the bitline but could include the sense amp or the column mux.
#The load from the bitlines is due to the drain capacitances from all the other bitlines and wire parasitics.
drain_load = logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])
wire_unit_load = .05 * drain_load #Wires add 5% to this.
bitline_load = (drain_load+wire_unit_load)*self.row_size
return [self.cell.analytical_delay(corner, slew, load+bitline_load)]
def analytical_power(self, corner, load):
"""Power of Bitcell array and bitline in nW."""
from tech import drc, parameter

View File

@ -33,10 +33,10 @@ class control_logic(design.design):
self.num_words = num_rows*words_per_row
self.enable_delay_chain_resizing = True
self.inv_parasitic_delay = logical_effort.logical_effort.pinv
#Determines how much larger the sen delay should be. Accounts for possible error in model.
self.wl_timing_tolerance = 1
self.parasitic_inv_delay = parameter["min_inv_para_delay"]
self.wl_stage_efforts = None
self.sen_stage_efforts = None
@ -219,7 +219,7 @@ class control_logic(design.design):
def get_dynamic_delay_chain_size(self, previous_stages, previous_fanout):
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
from math import ceil
previous_delay_chain_delay = (previous_fanout+1+self.parasitic_inv_delay)*previous_stages
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
delay_fanout = 3 # This can be anything >=2
@ -227,7 +227,7 @@ class control_logic(design.design):
#inverter adds 1 unit of delay (due to minimum size). This also depends on the pinv value
required_delay = self.wl_delay*self.wl_timing_tolerance - (self.sen_delay-previous_delay_chain_delay)
debug.check(required_delay > 0, "Cannot size delay chain to have negative delay")
delay_stages = ceil(required_delay/(delay_fanout+1+self.parasitic_inv_delay))
delay_stages = ceil(required_delay/(delay_fanout+1+self.inv_parasitic_delay))
if delay_stages%2 == 1: #force an even number of stages.
delay_stages+=1
#Fanout can be varied as well but is a little more complicated but potentially optimal.
@ -237,7 +237,7 @@ class control_logic(design.design):
def get_dynamic_delay_fanout_list(self, previous_stages, previous_fanout):
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
previous_delay_chain_delay = (previous_fanout+1+self.parasitic_inv_delay)*previous_stages
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
fanout_rise = fanout_fall = 2 # This can be anything >=2
@ -284,9 +284,9 @@ class control_logic(design.design):
def calculate_stages_with_fixed_fanout(self, required_delay, fanout):
from math import ceil
#Delay being negative is not an error. It implies that any amount of stages would have a negative effect on the overall delay
if required_delay <= 3+self.parasitic_inv_delay: #3 is the minimum delay per stage (with pinv=0).
if required_delay <= 3+self.inv_parasitic_delay: #3 is the minimum delay per stage (with pinv=0).
return 1
delay_stages = ceil(required_delay/(fanout+1+self.parasitic_inv_delay))
delay_stages = ceil(required_delay/(fanout+1+self.inv_parasitic_delay))
return delay_stages
def calculate_stage_list(self, total_stages, fanout_rise, fanout_fall):
@ -850,14 +850,14 @@ class control_logic(design.design):
def get_delays_to_wl(self):
"""Get the delay (in delay units) of the clk to a wordline in the bitcell array"""
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
self.wl_stage_efforts = self.determine_wordline_stage_efforts()
clk_to_wl_rise,clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts, self.parasitic_inv_delay)
self.wl_stage_efforts = self.get_wordline_stage_efforts()
clk_to_wl_rise,clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts)
total_delay = clk_to_wl_rise + clk_to_wl_fall
debug.info(1, "Clock to wl delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_wl_rise, clk_to_wl_fall,total_delay))
return clk_to_wl_rise,clk_to_wl_fall
def determine_wordline_stage_efforts(self):
def get_wordline_stage_efforts(self):
"""Follows the gated_clk_bar -> wl_en -> wordline signal for the total path efforts"""
stage_effort_list = []
@ -871,7 +871,7 @@ class control_logic(design.design):
last_stage_is_rise = stage_effort_list[-1].is_rise
#Then ask the sram for the other path delays (from the bank)
stage_effort_list += self.sram.determine_wordline_stage_efforts(last_stage_is_rise)
stage_effort_list += self.sram.get_wordline_stage_efforts(last_stage_is_rise)
return stage_effort_list
@ -880,17 +880,15 @@ class control_logic(design.design):
This does not incorporate the delay of the replica bitline.
"""
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
self.sen_stage_efforts = self.determine_sa_enable_stage_efforts()
clk_to_sen_rise, clk_to_sen_fall = logical_effort.calculate_relative_rise_fall_delays(self.sen_stage_efforts, self.parasitic_inv_delay)
self.sen_stage_efforts = self.get_sa_enable_stage_efforts()
clk_to_sen_rise, clk_to_sen_fall = logical_effort.calculate_relative_rise_fall_delays(self.sen_stage_efforts)
total_delay = clk_to_sen_rise + clk_to_sen_fall
debug.info(1, "Clock to s_en delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_sen_rise, clk_to_sen_fall,total_delay))
return clk_to_sen_rise, clk_to_sen_fall
def determine_sa_enable_stage_efforts(self):
def get_sa_enable_stage_efforts(self):
"""Follows the gated_clk_bar signal to the sense amp enable signal adding each stages stage effort to a list"""
stage_effort_list = []
#Calculate the load on clk_buf_bar
ext_clk_buf_cout = self.sram.get_clk_bar_cin()
#Initial direction of clock signal for this path
last_stage_rise = True
@ -917,7 +915,54 @@ class control_logic(design.design):
"""Gets a list of the stages and delays in order of their path."""
if self.sen_stage_efforts == None or self.wl_stage_efforts == None:
debug.error("Model delays not calculated for SRAM.", 1)
wl_delays = logical_effort.calculate_delays(self.wl_stage_efforts, self.parasitic_inv_delay)
sen_delays = logical_effort.calculate_delays(self.sen_stage_efforts, self.parasitic_inv_delay)
wl_delays = logical_effort.calculate_delays(self.wl_stage_efforts)
sen_delays = logical_effort.calculate_delays(self.sen_stage_efforts)
return wl_delays, sen_delays
def analytical_delay(self, corner, slew, load):
"""Gets the analytical delay from clk input to wl_en output"""
stage_effort_list = []
#Calculate the load on clk_buf_bar
ext_clk_buf_cout = self.sram.get_clk_bar_cin()
#Operations logic starts on negative edge
last_stage_rise = False
#First stage(s), clk -(pdriver)-> clk_buf.
clk_buf_cout = self.replica_bitline.get_en_cin()
stage_effort_list += self.clk_buf_driver.get_stage_efforts(clk_buf_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#Second stage, clk_buf -(inv)-> clk_bar
clk_bar_cout = self.and2.get_cin()
stage_effort_list += self.and2.get_stage_efforts(clk_bar_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#Third stage clk_bar -(and)-> gated_clk_bar
gated_clk_bar_cin = self.get_gated_clk_bar_cin()
stage_effort_list.append(self.inv.get_stage_effort(gated_clk_bar_cin, last_stage_rise))
last_stage_rise = stage_effort_list[-1].is_rise
#Stages from gated_clk_bar -------> wordline
stage_effort_list += self.get_wordline_stage_efforts()
return stage_effort_list
def get_clk_buf_cin(self):
"""Get the loads that are connected to the buffered clock.
Includes all the DFFs and some logic."""
#Control logic internal load
int_clk_buf_cap = self.inv.get_cin() + self.ctrl_dff_array.get_clk_cin() + self.and2.get_cin()
#Control logic external load (in the other parts of the SRAM)
ext_clk_buf_cap = self.sram.get_clk_bar_cin()
return int_clk_buf_cap + ext_clk_buf_cap
def get_gated_clk_bar_cin(self):
"""Get intermediates net gated_clk_bar's capacitance"""
total_cin = 0
total_cin += self.wl_en_driver.get_cin()
if self.port_type == 'rw':
total_cin +=self.and2.get_cin()
return total_cin

View File

@ -2,6 +2,7 @@ import design
import debug
import utils
from tech import GDS,layer, parameter,drc
import logical_effort
class sense_amp(design.design):
"""
@ -31,12 +32,13 @@ class sense_amp(design.design):
bitline_pmos_size = 8 #FIXME: This should be set somewhere and referenced. Probably in tech file.
return spice["min_tx_drain_c"]*(bitline_pmos_size/parameter["min_tx_size"])#ff
def analytical_delay(self, corner, slew, load=0.0):
from tech import spice
r = spice["min_tx_r"]/(10)
c_para = spice["min_tx_drain_c"]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew)
return self.return_delay(result.delay, result.slew)
def analytical_delay(self, corner, slew, load):
#Delay of the sense amp will depend on the size of the amp and the output load.
parasitic_delay = 1
cin = (parameter["sa_inv_pmos_size"] + parameter["sa_inv_nmos_size"])/drc("minwidth_tx")
sa_size = parameter["sa_inv_nmos_size"]/drc("minwidth_tx")
cc_inv_cin = cin
return logical_effort.logical_effort('column_mux', sa_size, cin, load+cc_inv_cin, parasitic_delay, False)
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""

View File

@ -4,6 +4,7 @@ from vector import vector
from sram_factory import factory
import debug
from globals import OPTS
import logical_effort
class sense_amp_array(design.design):
"""
@ -136,10 +137,17 @@ class sense_amp_array(design.design):
def input_load(self):
return self.amp.input_load()
def analytical_delay(self, corner, slew, load=0.0):
return self.amp.analytical_delay(corner, slew=slew, load=load)
def analytical_delay(self, corner, slew, load):
return [self.amp.analytical_delay(corner, slew=slew, load=load)]
def get_en_cin(self):
"""Get the relative capacitance of all the sense amp enable connections in the array"""
sense_amp_en_cin = self.amp.get_en_cin()
return sense_amp_en_cin * self.word_size
def get_drain_cin(self):
"""Get the relative capacitance of the drain of the PMOS isolation TX"""
from tech import parameter
#Bitcell drain load being used to estimate PMOS drain load
drain_load = logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])
return drain_load

View File

@ -7,6 +7,7 @@ import math
from vector import vector
from sram_factory import factory
from globals import OPTS
import logical_effort
class single_level_column_mux_array(design.design):
"""
@ -215,15 +216,18 @@ class single_level_column_mux_array(design.design):
self.add_via(layers=("metal1", "via1", "metal2"),
offset= br_out_offset,
rotate=90)
def analytical_delay(self, corner, vdd, slew, load=0.0):
from tech import spice, parameter
proc,vdd,temp = corner
r = spice["min_tx_r"]/(self.mux.ptx_width/parameter["min_tx_size"])
#Drains of mux transistors make up capacitance.
c_para = spice["min_tx_drain_c"]*(self.mux.ptx_width/parameter["min_tx_size"])*self.words_per_row#ff
volt_swing = spice["v_threshold_typical"]/vdd
def analytical_delay(self, corner, slew, load):
from tech import parameter
"""Returns relative delay that the column mux adds"""
#Single level column mux will add parasitic loads from other mux pass transistors and the sense amp.
drain_load = logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])
array_load = drain_load*self.words_per_row
return [self.mux.analytical_delay(corner, slew, load+array_load)]
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = volt_swing)
return self.return_delay(result.delay, result.slew)
def get_drain_cin(self):
"""Get the relative capacitance of the drain of the NMOS pass TX"""
from tech import parameter
#Bitcell drain load being used to estimate mux NMOS drain load
drain_load = logical_effort.convert_farad_to_relative_c(parameter['bitcell_drain_cap'])
return drain_load

View File

@ -125,3 +125,8 @@ class pand2(pgate.pgate):
stage_effort_list.append(stage2)
return stage_effort_list
def get_cin(self):
"""Return the relative input capacitance of a single input"""
return self.nand.get_cin()

View File

@ -19,6 +19,8 @@ class pdriver(pgate.pgate):
self.size_list = size_list
self.fanout = fanout
if size_list == None and self.fanout == 0:
debug.error("Either fanout or size list must be specified.", -1)
if self.size_list and self.fanout != 0:
debug.error("Cannot specify both size_list and fanout.", -1)
if self.size_list and self.neg_polarity:

View File

@ -5,6 +5,7 @@ from vector import vector
import contact
from globals import OPTS
from sram_factory import factory
import logical_effort
class single_level_column_mux(design.design):
"""
@ -180,5 +181,9 @@ class single_level_column_mux(design.design):
width=self.bitcell.width,
height=self.height)
def analytical_delay(self, corner, slew, load):
"""Returns relative delay that the column mux. Difficult to convert to LE model."""
parasitic_delay = 1
cin = 2*self.tx_size #This is not CMOS, so using this may be incorrect.
return logical_effort.logical_effort('column_mux', self.tx_size, cin, load, parasitic_delay, False)

View File

@ -11,6 +11,7 @@ from design import design
from verilog import verilog
from lef import lef
from sram_factory import factory
import logical_effort
class sram_base(design, verilog, lef):
"""
@ -505,10 +506,28 @@ class sram_base(design, verilog, lef):
def analytical_delay(self, corner, slew,load):
""" LH and HL are the same in analytical model. """
return self.bank.analytical_delay(corner,slew,load)
""" Estimates the delay from clk -> DOUT
LH and HL are the same in analytical model. """
delays = {}
for port in self.all_ports:
if port in self.readonly_ports:
control_logic = self.control_logic_r
elif port in self.readwrite_ports:
control_logic = self.control_logic_rw
else:
continue
clk_to_wlen_delays = control_logic.analytical_delay(corner, slew, load)
wlen_to_dout_delays = self.bank.analytical_delay(corner,slew,load,port) #port should probably be specified...
all_delays = clk_to_wlen_delays+wlen_to_dout_delays
total_delay = logical_effort.calculate_absolute_delay(all_delays)
total_delay = self.apply_corners_analytically(total_delay, corner)
last_slew = .1*all_delays[-1].get_absolute_delay() #slew approximated as 10% of delay
last_slew = self.apply_corners_analytically(last_slew, corner)
delays[port] = self.return_delay(delay=total_delay, slew=last_slew)
return delays
def determine_wordline_stage_efforts(self, inp_is_rise=True):
def get_wordline_stage_efforts(self, inp_is_rise=True):
"""Get the all the stage efforts for each stage in the path from clk_buf to a wordline"""
stage_effort_list = []
@ -546,4 +565,12 @@ class sram_base(design, verilog, lef):
return self.bank.get_sen_cin()
def get_dff_clk_buf_cin(self):
"""Get the relative capacitance of the clk_buf signal.
Does not get the control logic loading but everything else"""
total_cin = 0
total_cin += self.row_addr_dff.get_clk_cin()
total_cin += self.data_dff.get_clk_cin()
if self.col_addr_size > 0:
total_cin += self.col_addr_dff.get_clk_cin()
return total_cin

View File

@ -12,24 +12,21 @@ from globals import OPTS
from sram_factory import factory
import debug
class delay_model_test(openram_test):
class model_delay_sram_test(openram_test):
def runTest(self):
globals.init_openram("config_{0}".format(OPTS.tech_name))
OPTS.spice_name="hspice"
OPTS.analytical_delay = False
OPTS.netlist_only = True
OPTS.trim_netlist = False
debug.info(1, "Trimming disabled for this test. Simulation could be slow.")
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
from characterizer import model_check
from characterizer import delay
from sram import sram
from sram_config import sram_config
c = sram_config(word_size=4,
c = sram_config(word_size=1,
num_words=16,
num_banks=1)
c.words_per_row=1
@ -45,15 +42,32 @@ class delay_model_test(openram_test):
debug.info(1, "Probe address {0} probe data bit {1}".format(probe_address, probe_data))
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
mc = model_check(s.s, tempspice, corner)
d = delay(s.s, tempspice, corner)
import tech
loads = [tech.spice["msflop_in_cap"]*4]
slews = [tech.spice["rise_time"]*2]
sram_data = mc.analyze(probe_address, probe_data, slews, loads)
#Combine info about port into all data
#debug.info(1,"Data:\n{}".format(wl_data))
spice_data, port_data = d.analyze(probe_address, probe_data, slews, loads)
spice_data.update(port_data[0])
model_data, port_data = d.analytical_delay(slews, loads)
model_data.update(port_data[0])
#Only compare the delays
spice_delays = {key:value for key, value in spice_data.items() if 'delay' in key}
model_delays = {key:value for key, value in model_data.items() if 'delay' in key}
debug.info(1,"Spice Delays={}".format(spice_delays))
debug.info(1,"Model Delays={}".format(model_delays))
if OPTS.tech_name == "freepdk45":
error_tolerance = .25
elif OPTS.tech_name == "scn4m_subm":
error_tolerance = .25
else:
self.assertTrue(False) # other techs fail
# Check if no too many or too few results
self.assertTrue(len(spice_delays.keys())==len(model_delays.keys()))
self.assertTrue(self.check_golden_data(spice_delays,model_delays,error_tolerance))
globals.end_openram()
# run the test from the command line

View File

@ -1,80 +0,0 @@
#!/usr/bin/env python3
"""
Run a regression test on various srams
"""
import unittest
from testutils import header,openram_test
import sys,os
sys.path.append(os.path.join(sys.path[0],".."))
import globals
from globals import OPTS
from sram_factory import factory
import debug
@unittest.skip("SKIPPING 27_worst_case_delay_test")
class worst_case_timing_sram_test(openram_test):
def runTest(self):
OPTS.tech_name = "freepdk45"
globals.init_openram("config_{0}".format(OPTS.tech_name))
OPTS.spice_name="hspice"
OPTS.analytical_delay = False
OPTS.netlist_only = True
OPTS.trim_netlist = False
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
from characterizer import worst_case
if not OPTS.spice_exe:
debug.error("Could not find {} simulator.".format(OPTS.spice_name),-1)
word_size, num_words, num_banks = 2, 16, 1
from sram_config import sram_config
c = sram_config(word_size=word_size,
num_words=num_words,
num_banks=num_banks)
c.words_per_row=1
c.recompute_sizes()
debug.info(1, "Testing the timing different bitecells inside a {}bit, {} words SRAM with {} bank".format(
word_size, num_words, num_banks))
s = factory.create(module_type="sram", sram_config=c)
sp_netlist_file = OPTS.openram_temp + "temp.sp"
s.sp_write(sp_netlist_file)
if OPTS.use_pex:
gdsname = OPTS.output_path + s.name + ".gds"
s.gds_write(gdsname)
import verify
reload(verify)
# Output the extracted design if requested
sp_pex_file = OPTS.output_path + s.name + "_pex.sp"
verify.run_pex(s.name, gdsname, sp_netlist_file, output=sp_pex_file)
sp_sim_file = sp_pex_file
debug.info(1, "Performing spice simulations with backannotated spice file.")
else:
sp_sim_file = sp_netlist_file
debug.info(1, "Performing spice simulations with spice netlist.")
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
wc = worst_case(s.s, sp_sim_file, corner)
import tech
loads = [tech.spice["msflop_in_cap"]*4]
slews = [tech.spice["rise_time"]*2]
probe_address = "1" * s.s.addr_size
probe_data = s.s.word_size - 1
wc.analyze(probe_address, probe_data, slews, loads)
globals.end_openram()
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main()

View File

@ -336,6 +336,8 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
#Parameters related to sense amp enable timing and delay chain/RBL sizing
parameter['le_tau'] = 2.25 #In pico-seconds.
parameter['cap_relative_per_ff'] = 7.5 #Units of Relative Capacitance/ Femto-Farad
parameter["static_delay_stages"] = 4
parameter["static_fanout_per_stage"] = 3
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]
@ -344,7 +346,10 @@ parameter["6tcell_wl_cin"] = 3 #relative capacitance
parameter["min_inv_para_delay"] = 2.4 #Tau delay units
parameter["sa_en_pmos_size"] = .72 #micro-meters
parameter["sa_en_nmos_size"] = .27 #micro-meters
parameter["sa_inv_pmos_size"] = .54 #micro-meters
parameter["sa_inv_nmos_size"] = .27 #micro-meters
parameter["rbl_height_percentage"] = .5 #Height of RBL compared to bitcell array
parameter['bitcell_drain_cap'] = 0.1 #In Femto-Farad, approximation of drain capacitance
###################################################
##END Spice Simulation Parameters

View File

@ -302,15 +302,20 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
#Logical Effort relative values for the Handmade cells
parameter['le_tau'] = 23 #In pico-seconds.
parameter["min_inv_para_delay"] = .73 #In relative delay units
parameter['cap_relative_per_ff'] = .91 #Units of Relative Capacitance/ Femto-Farad
parameter["static_delay_stages"] = 4
parameter["static_fanout_per_stage"] = 3
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]
parameter["dff_clk_cin"] = 27.5
parameter["6tcell_wl_cin"] = 2
parameter["min_inv_para_delay"] = .5
parameter["dff_clk_cin"] = 27.5 #In relative capacitance units
parameter["6tcell_wl_cin"] = 2 #In relative capacitance units
parameter["sa_en_pmos_size"] = 24*_lambda_
parameter["sa_en_nmos_size"] = 9*_lambda_
parameter["sa_inv_pmos_size"] = 18*_lambda_
parameter["sa_inv_nmos_size"] = 9*_lambda_
parameter["rbl_height_percentage"] = .5 #Height of RBL compared to bitcell array
parameter['bitcell_drain_cap'] = 0.2 #In Femto-Farad, approximation of drain capacitance
###################################################
##END Spice Simulation Parameters