Added analyical model test which compares measured delay to model delay.

This commit is contained in:
Hunter Nichols 2019-04-03 16:19:49 -07:00
parent f6eefc1728
commit cc5b347f42
11 changed files with 71 additions and 170 deletions

View File

@ -24,19 +24,7 @@ class bitcell(design.design):
self.width = bitcell.width
self.height = bitcell.height
self.pin_map = bitcell.pin_map
# def analytical_delay(self, corner, slew, load=0, swing = 0.5):
# # delay of bit cell is not like a driver(from WL)
# # so the slew used should be 0
# # it should not be slew dependent?
# # because the value is there
# # the delay is only over half transsmission gate
# from tech import spice
# r = spice["min_tx_r"]*3
# c_para = spice["min_tx_drain_c"]
# result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
# return result
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
parasitic_delay = 1
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node

View File

@ -9,6 +9,7 @@ import utils
from globals import OPTS
from .simulation import simulation
from .measurements import *
import logical_effort
class delay(simulation):
"""Functions to measure the delay and power of an SRAM at a given address and
@ -904,8 +905,9 @@ class delay(simulation):
self.create_measurement_names()
power = self.analytical_power(slews, loads)
port_data = self.get_empty_measure_data_dict()
relative_loads = [logical_effort.convert_farad_to_relative_c(c_farad) for c_farad in loads]
for slew in slews:
for load in loads:
for load in relative_loads:
self.set_load_slew(load,slew)
bank_delay = self.sram.analytical_delay(self.corner, self.slew,self.load)
for port in self.all_ports:

View File

@ -67,4 +67,8 @@ def calculate_relative_rise_fall_delays(stage_effort_list):
else:
total_fall_delay += stage.get_stage_delay()
return total_rise_delay, total_fall_delay
def convert_farad_to_relative_c(c_farad):
"""Converts capacitance in Femto-Farads to relative capacitance."""
return c_farad*parameter['cap_relative_per_ff']

View File

@ -1215,37 +1215,6 @@ class bank(design.design):
offset=control_pos,
rotate=90)
# def analytical_delay(self, corner, slew, load):
# """ return analytical delay of the bank"""
# results = []
# decoder_delay = self.row_decoder.analytical_delay(corner, slew, self.wordline_driver.input_load())
# word_driver_delay = self.wordline_driver.analytical_delay(corner,
# decoder_delay.slew,
# self.bitcell_array.input_load())
# #FIXME: Array delay is the same for every port.
# bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_delay.slew)
# #This also essentially creates the same delay for each port. Good structure, no substance
# for port in self.all_ports:
# if self.words_per_row > 1:
# column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
# bitcell_array_delay.slew,
# self.sense_amp_array.input_load())
# else:
# column_mux_delay = self.return_delay(delay = 0.0, slew=word_driver_delay.slew)
# bl_t_data_out_delay = self.sense_amp_array.analytical_delay(corner,
# column_mux_delay.slew,
# self.bitcell_array.output_load())
# # output load of bitcell_array is set to be only small part of bl for sense amp.
# results.append(decoder_delay + word_driver_delay + bitcell_array_delay + column_mux_delay + bl_t_data_out_delay)
# return results
def analytical_delay(self, corner, slew, load):
""" return analytical delay of the bank. This will track the clock to output path"""
#FIXME: This delay is determined in the control logic. Should be moved here.
@ -1255,20 +1224,27 @@ class bank(design.design):
#FIXME: Array delay is the same for every port.
word_driver_slew = 0
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_slew)
if self.words_per_row > 1:
bitline_ext_load = self.column_mux_array[port].get_drain_cin()
else:
bitline_ext_load = self.sense_amp_array.get_drain_cin()
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_slew, bitline_ext_load)
bitcell_array_slew = 0
#This also essentially creates the same delay for each port. Good structure, no substance
if self.words_per_row > 1:
sa_load = self.sense_amp_array.get_drain_load()
column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
bitcell_array_delay.slew,
self.sense_amp_array.input_load())
bitcell_array_slew,
sa_load)
else:
column_mux_delay = []
column_mux_slew = 0
sense_amp_delay = self.sense_amp_array.analytical_delay(corner,
column_mux_slew,
self.bitcell_array.output_load())
column_mux_slew,
load)
# output load of bitcell_array is set to be only small part of bl for sense amp.
return bitcell_array_delay + column_mux_delay + sense_amp_delay

View File

@ -128,27 +128,9 @@ class bitcell_array(design.design):
inst = self.cell_inst[row,col]
for pin_name in ["vdd", "gnd"]:
for pin in inst.get_pins(pin_name):
self.add_power_pin(pin_name, pin.center(), 0, pin.layer)
# def analytical_delay(self, corner, slew, load=0):
# from tech import drc
# wl_wire = self.gen_wl_wire()
# wl_wire.return_delay_over_wire(slew)
# wl_to_cell_delay = wl_wire.return_delay_over_wire(slew)
# # hypothetical delay from cell to bl end without sense amp
# bl_wire = self.gen_bl_wire()
# cell_load = 2 * bl_wire.return_input_cap() # we ingore the wire r
# # hence just use the whole c
# bl_swing = 0.1
# cell_delay = self.cell.analytical_delay(corner, wl_to_cell_delay.slew, cell_load, swing = bl_swing)
# #we do not consider the delay over the wire for now
# return self.return_delay(cell_delay.delay+wl_to_cell_delay.delay,
# wl_to_cell_delay.slew)
self.add_power_pin(pin_name, pin.center(), 0, pin.layer)
def analytical_delay(self, corner, slew, load=0):
def analytical_delay(self, corner, slew, load):
"""Returns relative delay of the bitline in the bitcell array"""
#The load being driven/drained is mostly the bitline but could include the sense amp or the column mux.
#The load from the bitlines is due to the drain capacitances from all the other bitlines and wire parasitics.

View File

@ -4,6 +4,7 @@ from vector import vector
from sram_factory import factory
import debug
from globals import OPTS
import logical_effort
class sense_amp_array(design.design):
"""
@ -143,3 +144,9 @@ class sense_amp_array(design.design):
"""Get the relative capacitance of all the sense amp enable connections in the array"""
sense_amp_en_cin = self.amp.get_en_cin()
return sense_amp_en_cin * self.word_size
def get_drain_cin(self):
"""Get the relative capacitance of the drain of the PMOS isolation TX"""
#Estimated as half a parasitic delay.
drain_parasitics = .5
return drain_parasitics * logical_effort.logical_effort.pinv

View File

@ -7,6 +7,7 @@ import math
from vector import vector
from sram_factory import factory
from globals import OPTS
import logical_effort
class single_level_column_mux_array(design.design):
"""
@ -232,5 +233,11 @@ class single_level_column_mux_array(design.design):
"""Returns relative delay that the column mux adds"""
#Single level column mux will add parasitic loads from other mux pass transistors and the sense amp.
drain_parasitics = .5 #Assumed parasitics from unused TXs
array_load = drain_parasitics*self.words_per_row*logical_effort.pinv
return [self.mux.analytical_delay(corner, slew, load+array_load)]
array_load = drain_parasitics*self.words_per_row*logical_effort.logical_effort.pinv
return [self.mux.analytical_delay(corner, slew, load+array_load)]
def get_drain_cin(self):
"""Get the relative capacitance of the drain of the NMOS pass TX"""
#Estimated as half a parasitic delay.
drain_parasitics = .5
return drain_parasitics * logical_effort.logical_effort.pinv

View File

@ -11,25 +11,22 @@ import globals
from globals import OPTS
import debug
class delay_model_test(openram_test):
class model_delay_sram_test(openram_test):
def runTest(self):
globals.init_openram("config_20_{0}".format(OPTS.tech_name))
OPTS.spice_name="hspice"
#OPTS.spice_name="hspice"
OPTS.analytical_delay = False
OPTS.netlist_only = True
OPTS.trim_netlist = False
debug.info(1, "Trimming disabled for this test. Simulation could be slow.")
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
from characterizer import model_check
from characterizer import delay
from sram import sram
from sram_config import sram_config
c = sram_config(word_size=4,
c = sram_config(word_size=1,
num_words=16,
num_banks=1)
c.words_per_row=1
@ -45,15 +42,32 @@ class delay_model_test(openram_test):
debug.info(1, "Probe address {0} probe data bit {1}".format(probe_address, probe_data))
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
mc = model_check(s.s, tempspice, corner)
d = delay(s.s, tempspice, corner)
import tech
loads = [tech.spice["msflop_in_cap"]*4]
slews = [tech.spice["rise_time"]*2]
sram_data = mc.analyze(probe_address, probe_data, slews, loads)
#Combine info about port into all data
#debug.info(1,"Data:\n{}".format(wl_data))
spice_data, port_data = d.analyze(probe_address, probe_data, slews, loads)
spice_data.update(port_data[0])
model_data, port_data = d.analytical_delay(slews, loads)
model_data.update(port_data[0])
#Only compare the delays
spice_delays = {key:value for key, value in spice_data.items() if 'delay' in key}
model_delays = {key:value for key, value in model_data.items() if 'delay' in key}
debug.info(1,"Spice Delays={}".format(spice_delays))
debug.info(1,"Model Delays={}".format(model_delays))
if OPTS.tech_name == "freepdk45":
error_tolerance = .25
elif OPTS.tech_name == "scn4m_subm":
error_tolerance = .25
else:
self.assertTrue(False) # other techs fail
# Check if no too many or too few results
self.assertTrue(len(spice_delays.keys())==len(model_delays.keys()))
self.assertTrue(self.check_golden_data(spice_delays,model_delays,error_tolerance))
globals.end_openram()
# run the test from the command line

View File

@ -1,81 +0,0 @@
#!/usr/bin/env python3
"""
Run a regression test on various srams
"""
import unittest
from testutils import header,openram_test
import sys,os
sys.path.append(os.path.join(sys.path[0],".."))
import globals
from globals import OPTS
import debug
@unittest.skip("SKIPPING 27_worst_case_delay_test")
class worst_case_timing_sram_test(openram_test):
def runTest(self):
OPTS.tech_name = "freepdk45"
globals.init_openram("config_20_{0}".format(OPTS.tech_name))
OPTS.spice_name="hspice"
OPTS.analytical_delay = False
OPTS.netlist_only = True
OPTS.trim_netlist = False
OPTS.check_lvsdrc = True
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
from characterizer import worst_case
if not OPTS.spice_exe:
debug.error("Could not find {} simulator.".format(OPTS.spice_name),-1)
word_size, num_words, num_banks = 2, 16, 1
from sram import sram
from sram_config import sram_config
c = sram_config(word_size=word_size,
num_words=num_words,
num_banks=num_banks)
c.words_per_row=1
c.recompute_sizes()
debug.info(1, "Testing the timing different bitecells inside a {}bit, {} words SRAM with {} bank".format(
word_size, num_words, num_banks))
s = sram(c, name="sram1")
sp_netlist_file = OPTS.openram_temp + "temp.sp"
s.sp_write(sp_netlist_file)
if OPTS.use_pex:
gdsname = OPTS.output_path + s.name + ".gds"
s.gds_write(gdsname)
import verify
reload(verify)
# Output the extracted design if requested
sp_pex_file = OPTS.output_path + s.name + "_pex.sp"
verify.run_pex(s.name, gdsname, sp_netlist_file, output=sp_pex_file)
sp_sim_file = sp_pex_file
debug.info(1, "Performing spice simulations with backannotated spice file.")
else:
sp_sim_file = sp_netlist_file
debug.info(1, "Performing spice simulations with spice netlist.")
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
wc = worst_case(s.s, sp_sim_file, corner)
import tech
loads = [tech.spice["msflop_in_cap"]*4]
slews = [tech.spice["rise_time"]*2]
probe_address = "1" * s.s.addr_size
probe_data = s.s.word_size - 1
wc.analyze(probe_address, probe_data, slews, loads)
globals.end_openram()
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main()

View File

@ -336,7 +336,8 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
#Parameters related to sense amp enable timing and delay chain/RBL sizing
parameter['le_tau'] = 8 #In pico-seconds. FIXME:This is an assumed value, not measured.
parameter['le_tau'] = 2.25 #In pico-seconds.
parameter['cap_relative_per_ff'] = 7.5 #Units of Relative Capacitance/ Femto-Farad
parameter["static_delay_stages"] = 4
parameter["static_fanout_per_stage"] = 3
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]

View File

@ -302,13 +302,14 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
#Logical Effort relative values for the Handmade cells
parameter['le_tau'] = 40 #In pico-seconds. FIXME:This is an assumed value, not measured.
parameter['le_tau'] = 23 #In pico-seconds.
parameter["min_inv_para_delay"] = .73 #In relative delay units
parameter['cap_relative_per_ff'] = .91 #Units of Relative Capacitance/ Femto-Farad
parameter["static_delay_stages"] = 4
parameter["static_fanout_per_stage"] = 3
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]
parameter["dff_clk_cin"] = 27.5
parameter["6tcell_wl_cin"] = 2
parameter["min_inv_para_delay"] = .5
parameter["dff_clk_cin"] = 27.5 #In relative capacitance units
parameter["6tcell_wl_cin"] = 2 #In relative capacitance units
parameter["sa_en_pmos_size"] = 24*_lambda_
parameter["sa_en_nmos_size"] = 9*_lambda_
parameter["sa_inv_pmos_size"] = 18*_lambda_