mirror of https://github.com/VLSIDA/OpenRAM.git
Added updated analytical characterization with combined models
This commit is contained in:
parent
97777475b4
commit
f6eefc1728
|
|
@ -2,6 +2,7 @@ import design
|
|||
import debug
|
||||
import utils
|
||||
from tech import GDS,layer,parameter,drc
|
||||
import logical_effort
|
||||
|
||||
class bitcell(design.design):
|
||||
"""
|
||||
|
|
@ -24,18 +25,23 @@ class bitcell(design.design):
|
|||
self.height = bitcell.height
|
||||
self.pin_map = bitcell.pin_map
|
||||
|
||||
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
|
||||
# delay of bit cell is not like a driver(from WL)
|
||||
# so the slew used should be 0
|
||||
# it should not be slew dependent?
|
||||
# because the value is there
|
||||
# the delay is only over half transsmission gate
|
||||
from tech import spice
|
||||
r = spice["min_tx_r"]*3
|
||||
c_para = spice["min_tx_drain_c"]
|
||||
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
|
||||
return result
|
||||
# def analytical_delay(self, corner, slew, load=0, swing = 0.5):
|
||||
# # delay of bit cell is not like a driver(from WL)
|
||||
# # so the slew used should be 0
|
||||
# # it should not be slew dependent?
|
||||
# # because the value is there
|
||||
# # the delay is only over half transsmission gate
|
||||
# from tech import spice
|
||||
# r = spice["min_tx_r"]*3
|
||||
# c_para = spice["min_tx_drain_c"]
|
||||
# result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = swing)
|
||||
# return result
|
||||
|
||||
def analytical_delay(self, corner, slew, load=0, swing = 0.5):
|
||||
parasitic_delay = 1
|
||||
size = 0.5 #This accounts for bitline being drained thought the access TX and internal node
|
||||
cin = 3 #Assumes always a minimum sizes inverter. Could be specified in the tech.py file.
|
||||
return logical_effort.logical_effort('bitline', size, cin, load, parasitic_delay, False)
|
||||
|
||||
def list_bitcell_pins(self, col, row):
|
||||
""" Creates a list of connections in the bitcell, indexed by column and row, for instance use in bitcell_array """
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ class logical_effort():
|
|||
beta = parameter["beta"]
|
||||
min_inv_cin = 1+beta
|
||||
pinv=parameter["min_inv_para_delay"]
|
||||
tau = parameter['le_tau']
|
||||
|
||||
def __init__(self, name, size, cin, cout, parasitic, out_is_rise=True):
|
||||
self.name = name
|
||||
|
|
@ -30,30 +31,40 @@ class logical_effort():
|
|||
def get_stage_effort(self):
|
||||
return self.logical_effort*self.eletrical_effort
|
||||
|
||||
def get_parasitic_delay(self, pinv):
|
||||
return pinv * self.parasitic_scale
|
||||
def get_parasitic_delay(self):
|
||||
return logical_effort.pinv * self.parasitic_scale
|
||||
|
||||
def get_stage_delay(self, pinv):
|
||||
return self.get_stage_effort()+self.get_parasitic_delay(pinv)
|
||||
def get_stage_delay(self):
|
||||
return self.get_stage_effort()+self.get_parasitic_delay()
|
||||
|
||||
def calculate_delays(stage_effort_list, pinv):
|
||||
def get_absolute_delay(self):
|
||||
return logical_effort.tau*self.get_stage_delay()
|
||||
|
||||
def calculate_delays(stage_effort_list):
|
||||
"""Convert stage effort objects to list of delay values"""
|
||||
return [stage.get_stage_delay(pinv) for stage in stage_effort_list]
|
||||
return [stage.get_stage_delay() for stage in stage_effort_list]
|
||||
|
||||
def calculate_relative_delay(stage_effort_list, pinv=parameter["min_inv_para_delay"]):
|
||||
def calculate_relative_delay(stage_effort_list):
|
||||
"""Calculates the total delay of a given delay path made of a list of logical effort objects."""
|
||||
total_rise_delay, total_fall_delay = calculate_relative_rise_fall_delays(stage_effort_list, pinv)
|
||||
total_rise_delay, total_fall_delay = calculate_relative_rise_fall_delays(stage_effort_list)
|
||||
return total_rise_delay + total_fall_delay
|
||||
|
||||
def calculate_absolute_delay(stage_effort_list):
|
||||
"""Calculates the total delay of a given delay path made of a list of logical effort objects."""
|
||||
total_delay = 0
|
||||
for stage in stage_effort_list:
|
||||
total_delay+=stage.get_absolute_delay()
|
||||
return total_delay
|
||||
|
||||
def calculate_relative_rise_fall_delays(stage_effort_list, pinv=parameter["min_inv_para_delay"]):
|
||||
def calculate_relative_rise_fall_delays(stage_effort_list):
|
||||
"""Calculates the rise/fall delays of a given delay path made of a list of logical effort objects."""
|
||||
debug.info(2, "Calculating rise/fall relative delays")
|
||||
total_rise_delay, total_fall_delay = 0,0
|
||||
for stage in stage_effort_list:
|
||||
debug.info(2, stage)
|
||||
if stage.is_rise:
|
||||
total_rise_delay += stage.get_stage_delay(pinv)
|
||||
total_rise_delay += stage.get_stage_delay()
|
||||
else:
|
||||
total_fall_delay += stage.get_stage_delay(pinv)
|
||||
total_fall_delay += stage.get_stage_delay()
|
||||
return total_rise_delay, total_fall_delay
|
||||
|
||||
|
|
@ -1216,36 +1216,62 @@ class bank(design.design):
|
|||
rotate=90)
|
||||
|
||||
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
""" return analytical delay of the bank"""
|
||||
results = []
|
||||
# def analytical_delay(self, corner, slew, load):
|
||||
# """ return analytical delay of the bank"""
|
||||
# results = []
|
||||
|
||||
decoder_delay = self.row_decoder.analytical_delay(corner, slew, self.wordline_driver.input_load())
|
||||
# decoder_delay = self.row_decoder.analytical_delay(corner, slew, self.wordline_driver.input_load())
|
||||
|
||||
word_driver_delay = self.wordline_driver.analytical_delay(corner,
|
||||
decoder_delay.slew,
|
||||
self.bitcell_array.input_load())
|
||||
# word_driver_delay = self.wordline_driver.analytical_delay(corner,
|
||||
# decoder_delay.slew,
|
||||
# self.bitcell_array.input_load())
|
||||
|
||||
# #FIXME: Array delay is the same for every port.
|
||||
# bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_delay.slew)
|
||||
|
||||
# #This also essentially creates the same delay for each port. Good structure, no substance
|
||||
# for port in self.all_ports:
|
||||
# if self.words_per_row > 1:
|
||||
# column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
|
||||
# bitcell_array_delay.slew,
|
||||
# self.sense_amp_array.input_load())
|
||||
# else:
|
||||
# column_mux_delay = self.return_delay(delay = 0.0, slew=word_driver_delay.slew)
|
||||
|
||||
# bl_t_data_out_delay = self.sense_amp_array.analytical_delay(corner,
|
||||
# column_mux_delay.slew,
|
||||
# self.bitcell_array.output_load())
|
||||
# # output load of bitcell_array is set to be only small part of bl for sense amp.
|
||||
# results.append(decoder_delay + word_driver_delay + bitcell_array_delay + column_mux_delay + bl_t_data_out_delay)
|
||||
|
||||
# return results
|
||||
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
""" return analytical delay of the bank. This will track the clock to output path"""
|
||||
#FIXME: This delay is determined in the control logic. Should be moved here.
|
||||
# word_driver_delay = self.wordline_driver.analytical_delay(corner,
|
||||
# slew,
|
||||
# self.bitcell_array.input_load())
|
||||
|
||||
#FIXME: Array delay is the same for every port.
|
||||
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_delay.slew)
|
||||
word_driver_slew = 0
|
||||
bitcell_array_delay = self.bitcell_array.analytical_delay(corner, word_driver_slew)
|
||||
|
||||
#This also essentially creates the same delay for each port. Good structure, no substance
|
||||
for port in self.all_ports:
|
||||
if self.words_per_row > 1:
|
||||
column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
|
||||
bitcell_array_delay.slew,
|
||||
self.sense_amp_array.input_load())
|
||||
else:
|
||||
column_mux_delay = self.return_delay(delay = 0.0, slew=word_driver_delay.slew)
|
||||
|
||||
bl_t_data_out_delay = self.sense_amp_array.analytical_delay(corner,
|
||||
column_mux_delay.slew,
|
||||
self.bitcell_array.output_load())
|
||||
# output load of bitcell_array is set to be only small part of bl for sense amp.
|
||||
results.append(decoder_delay + word_driver_delay + bitcell_array_delay + column_mux_delay + bl_t_data_out_delay)
|
||||
|
||||
return results
|
||||
|
||||
if self.words_per_row > 1:
|
||||
column_mux_delay = self.column_mux_array[port].analytical_delay(corner,
|
||||
bitcell_array_delay.slew,
|
||||
self.sense_amp_array.input_load())
|
||||
else:
|
||||
column_mux_delay = []
|
||||
|
||||
column_mux_slew = 0
|
||||
sense_amp_delay = self.sense_amp_array.analytical_delay(corner,
|
||||
column_mux_slew,
|
||||
self.bitcell_array.output_load())
|
||||
# output load of bitcell_array is set to be only small part of bl for sense amp.
|
||||
return bitcell_array_delay + column_mux_delay + sense_amp_delay
|
||||
|
||||
def determine_wordline_stage_efforts(self, external_cout, inp_is_rise=True):
|
||||
"""Get the all the stage efforts for each stage in the path within the bank clk_buf to a wordline"""
|
||||
#Decoder is assumed to have settled before the negative edge of the clock. Delay model relies on this assumption
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@ from tech import drc, spice
|
|||
from vector import vector
|
||||
from globals import OPTS
|
||||
from sram_factory import factory
|
||||
import logical_effort
|
||||
|
||||
class bitcell_array(design.design):
|
||||
"""
|
||||
|
|
@ -130,23 +131,32 @@ class bitcell_array(design.design):
|
|||
self.add_power_pin(pin_name, pin.center(), 0, pin.layer)
|
||||
|
||||
|
||||
# def analytical_delay(self, corner, slew, load=0):
|
||||
# from tech import drc
|
||||
# wl_wire = self.gen_wl_wire()
|
||||
# wl_wire.return_delay_over_wire(slew)
|
||||
|
||||
# wl_to_cell_delay = wl_wire.return_delay_over_wire(slew)
|
||||
# # hypothetical delay from cell to bl end without sense amp
|
||||
# bl_wire = self.gen_bl_wire()
|
||||
# cell_load = 2 * bl_wire.return_input_cap() # we ingore the wire r
|
||||
# # hence just use the whole c
|
||||
# bl_swing = 0.1
|
||||
# cell_delay = self.cell.analytical_delay(corner, wl_to_cell_delay.slew, cell_load, swing = bl_swing)
|
||||
|
||||
# #we do not consider the delay over the wire for now
|
||||
# return self.return_delay(cell_delay.delay+wl_to_cell_delay.delay,
|
||||
# wl_to_cell_delay.slew)
|
||||
|
||||
def analytical_delay(self, corner, slew, load=0):
|
||||
from tech import drc
|
||||
wl_wire = self.gen_wl_wire()
|
||||
wl_wire.return_delay_over_wire(slew)
|
||||
|
||||
wl_to_cell_delay = wl_wire.return_delay_over_wire(slew)
|
||||
# hypothetical delay from cell to bl end without sense amp
|
||||
bl_wire = self.gen_bl_wire()
|
||||
cell_load = 2 * bl_wire.return_input_cap() # we ingore the wire r
|
||||
# hence just use the whole c
|
||||
bl_swing = 0.1
|
||||
cell_delay = self.cell.analytical_delay(corner, wl_to_cell_delay.slew, cell_load, swing = bl_swing)
|
||||
|
||||
#we do not consider the delay over the wire for now
|
||||
return self.return_delay(cell_delay.delay+wl_to_cell_delay.delay,
|
||||
wl_to_cell_delay.slew)
|
||||
|
||||
"""Returns relative delay of the bitline in the bitcell array"""
|
||||
#The load being driven/drained is mostly the bitline but could include the sense amp or the column mux.
|
||||
#The load from the bitlines is due to the drain capacitances from all the other bitlines and wire parasitics.
|
||||
drain_parasitics = .5 #each bitcell adds half a parasitic to the delay
|
||||
wire_parasitics = .05 * drain_parasitics #Wires add 5% to this.
|
||||
bitline_load = (drain_parasitics+wire_parasitics)*self.row_size * logical_effort.logical_effort.pinv
|
||||
return [self.cell.analytical_delay(corner, slew, load+bitline_load)]
|
||||
|
||||
def analytical_power(self, corner, load):
|
||||
"""Power of Bitcell array and bitline in nW."""
|
||||
from tech import drc, parameter
|
||||
|
|
|
|||
|
|
@ -33,10 +33,10 @@ class control_logic(design.design):
|
|||
self.num_words = num_rows*words_per_row
|
||||
|
||||
self.enable_delay_chain_resizing = True
|
||||
self.inv_parasitic_delay = logical_effort.logical_effort.pinv
|
||||
|
||||
#Determines how much larger the sen delay should be. Accounts for possible error in model.
|
||||
self.wl_timing_tolerance = 1
|
||||
self.parasitic_inv_delay = parameter["min_inv_para_delay"]
|
||||
self.wl_stage_efforts = None
|
||||
self.sen_stage_efforts = None
|
||||
|
||||
|
|
@ -219,7 +219,7 @@ class control_logic(design.design):
|
|||
def get_dynamic_delay_chain_size(self, previous_stages, previous_fanout):
|
||||
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
|
||||
from math import ceil
|
||||
previous_delay_chain_delay = (previous_fanout+1+self.parasitic_inv_delay)*previous_stages
|
||||
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
|
||||
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
|
||||
|
||||
delay_fanout = 3 # This can be anything >=2
|
||||
|
|
@ -227,7 +227,7 @@ class control_logic(design.design):
|
|||
#inverter adds 1 unit of delay (due to minimum size). This also depends on the pinv value
|
||||
required_delay = self.wl_delay*self.wl_timing_tolerance - (self.sen_delay-previous_delay_chain_delay)
|
||||
debug.check(required_delay > 0, "Cannot size delay chain to have negative delay")
|
||||
delay_stages = ceil(required_delay/(delay_fanout+1+self.parasitic_inv_delay))
|
||||
delay_stages = ceil(required_delay/(delay_fanout+1+self.inv_parasitic_delay))
|
||||
if delay_stages%2 == 1: #force an even number of stages.
|
||||
delay_stages+=1
|
||||
#Fanout can be varied as well but is a little more complicated but potentially optimal.
|
||||
|
|
@ -237,7 +237,7 @@ class control_logic(design.design):
|
|||
def get_dynamic_delay_fanout_list(self, previous_stages, previous_fanout):
|
||||
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
|
||||
|
||||
previous_delay_chain_delay = (previous_fanout+1+self.parasitic_inv_delay)*previous_stages
|
||||
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
|
||||
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
|
||||
|
||||
fanout_rise = fanout_fall = 2 # This can be anything >=2
|
||||
|
|
@ -284,9 +284,9 @@ class control_logic(design.design):
|
|||
def calculate_stages_with_fixed_fanout(self, required_delay, fanout):
|
||||
from math import ceil
|
||||
#Delay being negative is not an error. It implies that any amount of stages would have a negative effect on the overall delay
|
||||
if required_delay <= 3+self.parasitic_inv_delay: #3 is the minimum delay per stage (with pinv=0).
|
||||
if required_delay <= 3+self.inv_parasitic_delay: #3 is the minimum delay per stage (with pinv=0).
|
||||
return 1
|
||||
delay_stages = ceil(required_delay/(fanout+1+self.parasitic_inv_delay))
|
||||
delay_stages = ceil(required_delay/(fanout+1+self.inv_parasitic_delay))
|
||||
return delay_stages
|
||||
|
||||
def calculate_stage_list(self, total_stages, fanout_rise, fanout_fall):
|
||||
|
|
@ -850,14 +850,14 @@ class control_logic(design.design):
|
|||
def get_delays_to_wl(self):
|
||||
"""Get the delay (in delay units) of the clk to a wordline in the bitcell array"""
|
||||
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
|
||||
self.wl_stage_efforts = self.determine_wordline_stage_efforts()
|
||||
clk_to_wl_rise,clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts, self.parasitic_inv_delay)
|
||||
self.wl_stage_efforts = self.get_wordline_stage_efforts()
|
||||
clk_to_wl_rise,clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts)
|
||||
total_delay = clk_to_wl_rise + clk_to_wl_fall
|
||||
debug.info(1, "Clock to wl delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_wl_rise, clk_to_wl_fall,total_delay))
|
||||
return clk_to_wl_rise,clk_to_wl_fall
|
||||
|
||||
|
||||
def determine_wordline_stage_efforts(self):
|
||||
def get_wordline_stage_efforts(self):
|
||||
"""Follows the gated_clk_bar -> wl_en -> wordline signal for the total path efforts"""
|
||||
stage_effort_list = []
|
||||
|
||||
|
|
@ -871,7 +871,7 @@ class control_logic(design.design):
|
|||
last_stage_is_rise = stage_effort_list[-1].is_rise
|
||||
|
||||
#Then ask the sram for the other path delays (from the bank)
|
||||
stage_effort_list += self.sram.determine_wordline_stage_efforts(last_stage_is_rise)
|
||||
stage_effort_list += self.sram.get_wordline_stage_efforts(last_stage_is_rise)
|
||||
|
||||
return stage_effort_list
|
||||
|
||||
|
|
@ -880,17 +880,15 @@ class control_logic(design.design):
|
|||
This does not incorporate the delay of the replica bitline.
|
||||
"""
|
||||
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
|
||||
self.sen_stage_efforts = self.determine_sa_enable_stage_efforts()
|
||||
clk_to_sen_rise, clk_to_sen_fall = logical_effort.calculate_relative_rise_fall_delays(self.sen_stage_efforts, self.parasitic_inv_delay)
|
||||
self.sen_stage_efforts = self.get_sa_enable_stage_efforts()
|
||||
clk_to_sen_rise, clk_to_sen_fall = logical_effort.calculate_relative_rise_fall_delays(self.sen_stage_efforts)
|
||||
total_delay = clk_to_sen_rise + clk_to_sen_fall
|
||||
debug.info(1, "Clock to s_en delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_sen_rise, clk_to_sen_fall,total_delay))
|
||||
return clk_to_sen_rise, clk_to_sen_fall
|
||||
|
||||
def determine_sa_enable_stage_efforts(self):
|
||||
def get_sa_enable_stage_efforts(self):
|
||||
"""Follows the gated_clk_bar signal to the sense amp enable signal adding each stages stage effort to a list"""
|
||||
stage_effort_list = []
|
||||
#Calculate the load on clk_buf_bar
|
||||
ext_clk_buf_cout = self.sram.get_clk_bar_cin()
|
||||
|
||||
#Initial direction of clock signal for this path
|
||||
last_stage_rise = True
|
||||
|
|
@ -917,7 +915,54 @@ class control_logic(design.design):
|
|||
"""Gets a list of the stages and delays in order of their path."""
|
||||
if self.sen_stage_efforts == None or self.wl_stage_efforts == None:
|
||||
debug.error("Model delays not calculated for SRAM.", 1)
|
||||
wl_delays = logical_effort.calculate_delays(self.wl_stage_efforts, self.parasitic_inv_delay)
|
||||
sen_delays = logical_effort.calculate_delays(self.sen_stage_efforts, self.parasitic_inv_delay)
|
||||
wl_delays = logical_effort.calculate_delays(self.wl_stage_efforts)
|
||||
sen_delays = logical_effort.calculate_delays(self.sen_stage_efforts)
|
||||
return wl_delays, sen_delays
|
||||
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
"""Gets the analytical delay from clk input to wl_en output"""
|
||||
stage_effort_list = []
|
||||
#Calculate the load on clk_buf_bar
|
||||
ext_clk_buf_cout = self.sram.get_clk_bar_cin()
|
||||
|
||||
#Operations logic starts on negative edge
|
||||
last_stage_rise = False
|
||||
|
||||
#First stage(s), clk -(pdriver)-> clk_buf.
|
||||
clk_buf_cout = self.replica_bitline.get_en_cin()
|
||||
stage_effort_list += self.clk_buf_driver.get_stage_efforts(clk_buf_cout, last_stage_rise)
|
||||
last_stage_rise = stage_effort_list[-1].is_rise
|
||||
|
||||
#Second stage, clk_buf -(inv)-> clk_bar
|
||||
clk_bar_cout = self.and2.get_cin()
|
||||
stage_effort_list += self.and2.get_stage_efforts(clk_bar_cout, last_stage_rise)
|
||||
last_stage_rise = stage_effort_list[-1].is_rise
|
||||
|
||||
#Third stage clk_bar -(and)-> gated_clk_bar
|
||||
gated_clk_bar_cin = self.get_gated_clk_bar_cin()
|
||||
stage_effort_list.append(self.inv.get_stage_effort(gated_clk_bar_cin, last_stage_rise))
|
||||
last_stage_rise = stage_effort_list[-1].is_rise
|
||||
|
||||
#Stages from gated_clk_bar -------> wordline
|
||||
stage_effort_list += self.get_wordline_stage_efforts()
|
||||
return stage_effort_list
|
||||
|
||||
def get_clk_buf_cin(self):
|
||||
"""Get the loads that are connected to the buffered clock.
|
||||
Includes all the DFFs and some logic."""
|
||||
|
||||
#Control logic internal load
|
||||
int_clk_buf_cap = self.inv.get_cin() + self.ctrl_dff_array.get_clk_cin() + self.and2.get_cin()
|
||||
|
||||
#Control logic external load (in the other parts of the SRAM)
|
||||
ext_clk_buf_cap = self.sram.get_clk_bar_cin()
|
||||
|
||||
return int_clk_buf_cap + ext_clk_buf_cap
|
||||
|
||||
def get_gated_clk_bar_cin(self):
|
||||
"""Get intermediates net gated_clk_bar's capacitance"""
|
||||
total_cin = 0
|
||||
total_cin += self.wl_en_driver.get_cin()
|
||||
if self.port_type == 'rw':
|
||||
total_cin +=self.and2.get_cin()
|
||||
return total_cin
|
||||
|
|
@ -2,6 +2,7 @@ import design
|
|||
import debug
|
||||
import utils
|
||||
from tech import GDS,layer, parameter,drc
|
||||
import logical_effort
|
||||
|
||||
class sense_amp(design.design):
|
||||
"""
|
||||
|
|
@ -31,12 +32,13 @@ class sense_amp(design.design):
|
|||
bitline_pmos_size = 8 #FIXME: This should be set somewhere and referenced. Probably in tech file.
|
||||
return spice["min_tx_drain_c"]*(bitline_pmos_size/parameter["min_tx_size"])#ff
|
||||
|
||||
def analytical_delay(self, corner, slew, load=0.0):
|
||||
from tech import spice
|
||||
r = spice["min_tx_r"]/(10)
|
||||
c_para = spice["min_tx_drain_c"]
|
||||
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew)
|
||||
return self.return_delay(result.delay, result.slew)
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
#Delay of the sense amp will depend on the size of the amp and the output load.
|
||||
parasitic_delay = 1
|
||||
cin = (parameter["sa_inv_pmos_size"] + parameter["sa_inv_nmos_size"])/drc("minwidth_tx")
|
||||
sa_size = parameter["sa_inv_nmos_size"]/drc("minwidth_tx")
|
||||
cc_inv_cin = cin
|
||||
return logical_effort.logical_effort('column_mux', sa_size, cin, load+cc_inv_cin, parasitic_delay, False)
|
||||
|
||||
def analytical_power(self, corner, load):
|
||||
"""Returns dynamic and leakage power. Results in nW"""
|
||||
|
|
|
|||
|
|
@ -136,8 +136,8 @@ class sense_amp_array(design.design):
|
|||
def input_load(self):
|
||||
return self.amp.input_load()
|
||||
|
||||
def analytical_delay(self, corner, slew, load=0.0):
|
||||
return self.amp.analytical_delay(corner, slew=slew, load=load)
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
return [self.amp.analytical_delay(corner, slew=slew, load=load)]
|
||||
|
||||
def get_en_cin(self):
|
||||
"""Get the relative capacitance of all the sense amp enable connections in the array"""
|
||||
|
|
|
|||
|
|
@ -227,3 +227,10 @@ class single_level_column_mux_array(design.design):
|
|||
result = self.cal_delay_with_rc(corner, r = r, c = c_para+load, slew = slew, swing = volt_swing)
|
||||
return self.return_delay(result.delay, result.slew)
|
||||
|
||||
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
"""Returns relative delay that the column mux adds"""
|
||||
#Single level column mux will add parasitic loads from other mux pass transistors and the sense amp.
|
||||
drain_parasitics = .5 #Assumed parasitics from unused TXs
|
||||
array_load = drain_parasitics*self.words_per_row*logical_effort.pinv
|
||||
return [self.mux.analytical_delay(corner, slew, load+array_load)]
|
||||
|
|
@ -125,3 +125,8 @@ class pand2(pgate.pgate):
|
|||
stage_effort_list.append(stage2)
|
||||
|
||||
return stage_effort_list
|
||||
|
||||
def get_cin(self):
|
||||
"""Return the relative input capacitance of a single input"""
|
||||
return self.nand.get_cin()
|
||||
|
||||
|
|
@ -180,5 +180,9 @@ class single_level_column_mux(design.design):
|
|||
width=self.bitcell.width,
|
||||
height=self.height)
|
||||
|
||||
|
||||
def analytical_delay(self, corner, slew, load):
|
||||
"""Returns relative delay that the column mux. Difficult to convert to LE model."""
|
||||
parasitic_delay = 1
|
||||
cin = 2*self.tx_size #This is not CMOS, so using this may be incorrect.
|
||||
return logical_effort.logical_effort('column_mux', self.tx_size, cin, load, parasitic_delay, False)
|
||||
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ from design import design
|
|||
from verilog import verilog
|
||||
from lef import lef
|
||||
from sram_factory import factory
|
||||
import logical_effort
|
||||
|
||||
class sram_base(design, verilog, lef):
|
||||
"""
|
||||
|
|
@ -500,10 +501,26 @@ class sram_base(design, verilog, lef):
|
|||
|
||||
|
||||
def analytical_delay(self, corner, slew,load):
|
||||
""" LH and HL are the same in analytical model. """
|
||||
return self.bank.analytical_delay(corner,slew,load)
|
||||
""" Estimates the delay from clk -> DOUT
|
||||
LH and HL are the same in analytical model. """
|
||||
delays = {}
|
||||
for port in self.all_ports:
|
||||
if port in self.readonly_ports:
|
||||
control_logic = self.control_logic_r
|
||||
elif port in self.readwrite_ports:
|
||||
control_logic = self.control_logic_rw
|
||||
else:
|
||||
continue
|
||||
clk_to_wlen_delays = control_logic.analytical_delay(corner, slew, load)
|
||||
wlen_to_dout_delays = self.bank.analytical_delay(corner,slew,load) #port should probably be specified...
|
||||
all_delays = clk_to_wlen_delays+wlen_to_dout_delays
|
||||
total_delay = logical_effort.calculate_absolute_delay(all_delays)
|
||||
last_slew = .1*all_delays[-1].get_absolute_delay() #slew approximated as 10% of delay
|
||||
delays[port] = self.return_delay(delay=total_delay, slew=last_slew)
|
||||
|
||||
return delays
|
||||
|
||||
def determine_wordline_stage_efforts(self, inp_is_rise=True):
|
||||
def get_wordline_stage_efforts(self, inp_is_rise=True):
|
||||
"""Get the all the stage efforts for each stage in the path from clk_buf to a wordline"""
|
||||
stage_effort_list = []
|
||||
|
||||
|
|
@ -541,4 +558,12 @@ class sram_base(design, verilog, lef):
|
|||
return self.bank.get_sen_cin()
|
||||
|
||||
|
||||
|
||||
def get_dff_clk_buf_cin(self):
|
||||
"""Get the relative capacitance of the clk_buf signal.
|
||||
Does not get the control logic loading but everything else"""
|
||||
total_cin = 0
|
||||
total_cin += self.row_addr_dff.get_clk_cin()
|
||||
total_cin += self.data_dff.get_clk_cin()
|
||||
if self.col_addr_size > 0:
|
||||
total_cin += self.col_addr_dff.get_clk_cin()
|
||||
return total_cin
|
||||
|
|
@ -15,7 +15,7 @@ class lib_test(openram_test):
|
|||
|
||||
def runTest(self):
|
||||
globals.init_openram("config_20_{0}".format(OPTS.tech_name))
|
||||
|
||||
OPTS.netlist_only = True
|
||||
from characterizer import lib
|
||||
from sram import sram
|
||||
from sram_config import sram_config
|
||||
|
|
|
|||
|
|
@ -336,6 +336,7 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
|
|||
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
|
||||
|
||||
#Parameters related to sense amp enable timing and delay chain/RBL sizing
|
||||
parameter['le_tau'] = 8 #In pico-seconds. FIXME:This is an assumed value, not measured.
|
||||
parameter["static_delay_stages"] = 4
|
||||
parameter["static_fanout_per_stage"] = 3
|
||||
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]
|
||||
|
|
@ -344,6 +345,8 @@ parameter["6tcell_wl_cin"] = 3 #relative capacitance
|
|||
parameter["min_inv_para_delay"] = 2.4 #Tau delay units
|
||||
parameter["sa_en_pmos_size"] = .72 #micro-meters
|
||||
parameter["sa_en_nmos_size"] = .27 #micro-meters
|
||||
parameter["sa_inv_pmos_size"] = .54 #micro-meters
|
||||
parameter["sa_inv_nmos_size"] = .27 #micro-meters
|
||||
parameter["rbl_height_percentage"] = .5 #Height of RBL compared to bitcell array
|
||||
|
||||
###################################################
|
||||
|
|
|
|||
|
|
@ -302,6 +302,7 @@ spice["nand3_transition_prob"] = .1094 # Transition probability of 3-input na
|
|||
spice["nor2_transition_prob"] = .1875 # Transition probability of 2-input nor.
|
||||
|
||||
#Logical Effort relative values for the Handmade cells
|
||||
parameter['le_tau'] = 40 #In pico-seconds. FIXME:This is an assumed value, not measured.
|
||||
parameter["static_delay_stages"] = 4
|
||||
parameter["static_fanout_per_stage"] = 3
|
||||
parameter["static_fanout_list"] = parameter["static_delay_stages"]*[parameter["static_fanout_per_stage"]]
|
||||
|
|
@ -310,6 +311,8 @@ parameter["6tcell_wl_cin"] = 2
|
|||
parameter["min_inv_para_delay"] = .5
|
||||
parameter["sa_en_pmos_size"] = 24*_lambda_
|
||||
parameter["sa_en_nmos_size"] = 9*_lambda_
|
||||
parameter["sa_inv_pmos_size"] = 18*_lambda_
|
||||
parameter["sa_inv_nmos_size"] = 9*_lambda_
|
||||
parameter["rbl_height_percentage"] = .5 #Height of RBL compared to bitcell array
|
||||
|
||||
###################################################
|
||||
|
|
|
|||
Loading…
Reference in New Issue