Merge remote-tracking branch 'origin/dev' into rbl_revamp

This commit is contained in:
mrg 2019-07-12 11:10:07 -07:00
commit a189b325ed
20 changed files with 772 additions and 143 deletions

View File

@ -11,6 +11,7 @@ import os
import math
import tech
class spice():
"""
This provides a set of useful generic types for hierarchy
@ -132,13 +133,13 @@ class spice():
"""Adds a subckt/submodule to the subckt hierarchy"""
self.mods.append(mod)
def connect_inst(self, args, check=True):
"""Connects the pins of the last instance added
It is preferred to use the function with the check to find if
there is a problem. The check option can be set to false
where we dynamically generate groups of connections after a
group of modules are generated."""
if (check and (len(self.insts[-1].mod.pins) != len(args))):
from pprint import pformat
modpins_string=pformat(self.insts[-1].mod.pins)

View File

@ -18,10 +18,18 @@ class verilog:
def verilog_write(self,verilog_name):
""" Write a behavioral Verilog model. """
self.vf = open(verilog_name, "w")
# Determine if optional write mask is used
self.wmask_enabled = False
if self.word_size != self.write_size:
self.wmask_enabled = True
self.vf.write("// OpenRAM SRAM model\n")
self.vf.write("// Words: {0}\n".format(self.num_words))
self.vf.write("// Word size: {0}\n\n".format(self.word_size))
self.vf.write("// Word size: {0}\n".format(self.word_size))
if self.wmask_enabled:
self.vf.write("// Write size: {0}\n\n".format(self.write_size))
else:
self.vf.write("\n")
self.vf.write("module {0}(\n".format(self.name))
for port in self.all_ports:
@ -32,9 +40,15 @@ class verilog:
elif port in self.write_ports:
self.vf.write("// Port {0}: W\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" clk{0},csb{0},web{0},ADDR{0},DIN{0},DOUT{0}".format(port))
self.vf.write(" clk{0},csb{0},web{0},".format(port))
if self.wmask_enabled:
self.vf.write("wmask{},".format(port))
self.vf.write("ADDR{0},DIN{0},DOUT{0}".format(port))
elif port in self.write_ports:
self.vf.write(" clk{0},csb{0},ADDR{0},DIN{0}".format(port))
self.vf.write(" clk{0},csb{0},".format(port))
if self.wmask_enabled:
self.vf.write("wmask{},".format(port))
self.vf.write("ADDR{0},DIN{0}".format(port))
elif port in self.read_ports:
self.vf.write(" clk{0},csb{0},ADDR{0},DOUT{0}".format(port))
# Continue for every port on a new line
@ -42,6 +56,9 @@ class verilog:
self.vf.write(",\n")
self.vf.write("\n );\n\n")
if self.wmask_enabled:
self.num_wmask = int(self.word_size/self.write_size)
self.vf.write(" parameter NUM_WMASK = {0} ;\n".format(self.num_wmask))
self.vf.write(" parameter DATA_WIDTH = {0} ;\n".format(self.word_size))
self.vf.write(" parameter ADDR_WIDTH = {0} ;\n".format(self.addr_size))
self.vf.write(" parameter RAM_DEPTH = 1 << ADDR_WIDTH;\n")
@ -85,6 +102,9 @@ class verilog:
self.vf.write(" reg csb{0}_reg;\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" reg web{0}_reg;\n".format(port))
if port in self.write_ports:
if self.wmask_enabled:
self.vf.write(" reg [NUM_WMASK-1:0] wmask{0}_reg;\n".format(port))
self.vf.write(" reg [ADDR_WIDTH-1:0] ADDR{0}_reg;\n".format(port))
if port in self.write_ports:
self.vf.write(" reg [DATA_WIDTH-1:0] DIN{0}_reg;\n".format(port))
@ -102,6 +122,9 @@ class verilog:
self.vf.write(" csb{0}_reg = csb{0};\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" web{0}_reg = web{0};\n".format(port))
if port in self.write_ports:
if self.wmask_enabled:
self.vf.write(" wmask{0}_reg = wmask{0};\n".format(port))
self.vf.write(" ADDR{0}_reg = ADDR{0};\n".format(port))
if port in self.write_ports:
self.vf.write(" DIN{0}_reg = DIN{0};\n".format(port))
@ -113,13 +136,19 @@ class verilog:
elif port in self.read_ports:
self.vf.write(" if ( !csb{0}_reg ) \n".format(port))
self.vf.write(" $display($time,\" Reading %m ADDR{0}=%b DOUT{0}=%b\",ADDR{0}_reg,mem[ADDR{0}_reg]);\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" if ( !csb{0}_reg && !web{0}_reg )\n".format(port))
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b\",ADDR{0}_reg,DIN{0}_reg);\n".format(port))
if self.wmask_enabled:
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b wmask{0}=%b\",ADDR{0}_reg,DIN{0}_reg,wmask{0}_reg);\n".format(port))
else:
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b\",ADDR{0}_reg,DIN{0}_reg);\n".format(port))
elif port in self.write_ports:
self.vf.write(" if ( !csb{0}_reg )\n".format(port))
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b\",ADDR{0}_reg,DIN{0}_reg);\n".format(port))
if self.wmask_enabled:
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b wmask{0}=%b\",ADDR{0}_reg,DIN{0}_reg,wmask{0}_reg);\n".format(port))
else:
self.vf.write(" $display($time,\" Writing %m ADDR{0}=%b DIN{0}=%b\",ADDR{0}_reg,DIN{0}_reg);\n".format(port))
self.vf.write(" end\n\n")
@ -131,6 +160,8 @@ class verilog:
self.vf.write(" input csb{0}; // active low chip select\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" input web{0}; // active low write control\n".format(port))
if (self.wmask_enabled):
self.vf.write(" input [NUM_WMASK-1:0] wmask{0}; // write mask\n".format(port))
self.vf.write(" input [ADDR_WIDTH-1:0] ADDR{0};\n".format(port))
if port in self.write_ports:
self.vf.write(" input [DATA_WIDTH-1:0] DIN{0};\n".format(port))
@ -148,10 +179,25 @@ class verilog:
self.vf.write(" always @ (negedge clk{0})\n".format(port))
self.vf.write(" begin : MEM_WRITE{0}\n".format(port))
if port in self.readwrite_ports:
self.vf.write(" if ( !csb{0}_reg && !web{0}_reg )\n".format(port))
if self.wmask_enabled:
self.vf.write(" if ( !csb{0}_reg && !web{0}_reg ) begin\n".format(port))
else:
self.vf.write(" if ( !csb{0}_reg && !web{0}_reg )\n".format(port))
else:
self.vf.write(" if (!csb{0}_reg)\n".format(port))
self.vf.write(" mem[ADDR{0}_reg] = DIN{0}_reg;\n".format(port))
if self.wmask_enabled:
self.vf.write(" if (!csb{0}_reg) begin\n".format(port))
else:
self.vf.write(" if (!csb{0}_reg)\n".format(port))
if self.wmask_enabled:
for mask in range(0,self.num_wmask):
lower = mask * self.write_size
upper = lower + self.write_size-1
self.vf.write(" if (wmask{0}_reg[{1}])\n".format(port,mask))
self.vf.write(" mem[ADDR{0}_reg][{1}:{2}] = DIN{0}_reg[{1}:{2}];\n".format(port,upper,lower))
self.vf.write(" end\n")
else:
self.vf.write(" mem[ADDR{0}_reg] = DIN{0}_reg;\n".format(port))
self.vf.write(" end\n")
def add_read_block(self, port):

View File

@ -24,6 +24,7 @@ class simulation():
self.name = self.sram.name
self.word_size = self.sram.word_size
self.addr_size = self.sram.addr_size
self.write_size = self.sram.write_size
self.num_cols = self.sram.num_cols
self.num_rows = self.sram.num_rows
self.num_banks = self.sram.num_banks
@ -266,6 +267,8 @@ class simulation():
for port in range(total_ports):
if (port in read_index) and (port in write_index):
pin_names.append("WEB{0}".format(port))
if (self.write_size != self.word_size):
pin_names.append("WMASK{0}".format(port))
for port in range(total_ports):
pin_names.append("{0}{1}".format(tech.spice["clk"], port))

View File

@ -20,8 +20,8 @@ import copy
import importlib
USAGE = "Usage: openram.py [options] <config file>\nUse -h for help.\n"
# Anonymous object that will be the options
OPTS = options.options()
CHECKPOINT_OPTS=None
@ -470,6 +470,18 @@ def report_status():
debug.error("{0} is not an integer in config file.".format(OPTS.word_size))
if type(OPTS.num_words)!=int:
debug.error("{0} is not an integer in config file.".format(OPTS.sram_size))
if type(OPTS.write_size) != int and OPTS.write_size != None:
debug.error("{0} is not an integer in config file.".format(OPTS.write_size))
# Determine if a write mask is specified by the user; if it's not, the mask write size should
# be the same as the word size so that an entire word is written at once
if OPTS.write_size==None:
OPTS.write_size = OPTS.word_size
if (OPTS.write_size < 1 or OPTS.write_size > OPTS.word_size):
debug.error("Write size needs to be between 1 bit and {0} bits.".format(OPTS.word_size))
if (OPTS.word_size % OPTS.write_size != 0):
debug.error("Write size needs to be an integer multiple of word size.")
if not OPTS.tech_name:
debug.error("Tech name must be specified in config file.")
@ -483,9 +495,12 @@ def report_status():
debug.print_raw("Word size: {0}\nWords: {1}\nBanks: {2}".format(OPTS.word_size,
OPTS.num_words,
OPTS.num_banks))
if (OPTS.write_size != OPTS.word_size):
debug.print_raw("Write size: {}".format(OPTS.write_size))
debug.print_raw("RW ports: {0}\nR-only ports: {1}\nW-only ports: {2}".format(OPTS.num_rw_ports,
OPTS.num_r_ports,
OPTS.num_w_ports))
if OPTS.netlist_only:
debug.print_raw("Netlist only mode (no physical design is being done, netlist_only=False to disable).")

View File

@ -84,6 +84,9 @@ class bank(design.design):
for port in self.write_ports:
for bit in range(self.word_size):
self.add_pin("din{0}_{1}".format(port,bit),"IN")
# if (self.word_size != self.write_size):
# for bit in range(self.word_size):
# self.add_pin()
for port in self.all_ports:
for bit in range(self.addr_size):
self.add_pin("addr{0}_{1}".format(port,bit),"INPUT")

View File

@ -21,7 +21,7 @@ class control_logic(design.design):
Dynamically generated Control logic for the total SRAM circuit.
"""
def __init__(self, num_rows, words_per_row, word_size, sram=None, port_type="rw", name=""):
def __init__(self, num_rows, words_per_row, word_size, write_size, sram=None, port_type="rw", name=""):
""" Constructor """
name = "control_logic_" + port_type
design.design.__init__(self, name)
@ -35,6 +35,7 @@ class control_logic(design.design):
self.words_per_row = words_per_row
self.word_size = word_size
self.port_type = port_type
self.write_size = write_size
self.num_cols = word_size*words_per_row
self.num_words = num_rows*words_per_row
@ -748,6 +749,8 @@ class control_logic(design.design):
def route_dffs(self):
if self.port_type == "rw":
#print("hi")
#if (self.word_size == self.write_size):
dff_out_map = zip(["dout_bar_0", "dout_bar_1", "dout_1"], ["cs", "we", "we_bar"])
elif self.port_type == "r":
dff_out_map = zip(["dout_bar_0", "dout_0"], ["cs", "cs_bar"])

View File

@ -50,7 +50,8 @@ from sram_config import sram_config
# Configure the SRAM organization
c = sram_config(word_size=OPTS.word_size,
num_words=OPTS.num_words)
num_words=OPTS.num_words,
write_size=OPTS.write_size)
debug.print_raw("Words per row: {}".format(c.words_per_row))
#from parser import *

View File

@ -8,6 +8,7 @@
import optparse
import getpass
import os
#import sram_config
class options(optparse.Values):
"""
@ -29,6 +30,9 @@ class options(optparse.Values):
num_r_ports = 0
num_w_ports = 0
# Write mask size, default will be overwritten with word_size if not user specified
write_size = None
# These will get initialized by the user or the tech file
supply_voltages = ""
temperatures = ""

View File

@ -35,7 +35,6 @@ class sram():
self.name = name
if self.num_banks == 1:
from sram_1bank import sram_1bank as sram
elif self.num_banks == 2:
@ -84,8 +83,6 @@ class sram():
self.gds_write(gdsname)
print_time("GDS", datetime.datetime.now(), start_time)
# Save the spice file
start_time = datetime.datetime.now()
spname = OPTS.output_path + self.s.name + ".sp"

View File

@ -46,6 +46,9 @@ class sram_1bank(sram_base):
self.data_dff_insts = self.create_data_dff()
if (self.write_size != self.word_size):
self.wmask_dff_insts = self.create_wmask_dff()
def place_instances(self):
"""
@ -65,6 +68,7 @@ class sram_1bank(sram_base):
row_addr_pos = [None]*len(self.all_ports)
col_addr_pos = [None]*len(self.all_ports)
data_pos = [None]*len(self.all_ports)
wmask_pos = [None]*len(self.all_ports)
# This is M2 pitch even though it is on M1 to help stem via spacings on the trunk
# The M1 pitch is for supply rail spacings
@ -105,6 +109,29 @@ class sram_1bank(sram_base):
row_addr_pos[port] = vector(x_offset, y_offset)
self.row_addr_dff_insts[port].place(row_addr_pos[port])
# Add the col address flops below the bank to the left of the lower-left of bank array
if self.col_addr_dff:
col_addr_pos[port] = vector(self.bank.bank_array_ll.x - self.col_addr_dff_insts[port].width - self.bank.m2_gap,
-max_gap_size - self.col_addr_dff_insts[port].height)
self.col_addr_dff_insts[port].place(col_addr_pos[port])
# Add the data flops below the bank to the right of the lower-left of bank array
# This relies on the lower-left of the array of the bank
# decoder in upper left, bank in upper right, sensing in lower right.
# These flops go below the sensing and leave a gap to channel route to the
# sense amps.
if port in self.write_ports:
data_pos[port] = vector(self.bank.bank_array_ll.x,
-max_gap_size - self.data_dff_insts[port].height)
self.data_dff_insts[port].place(data_pos[port])
# Add the write mask flops to the left of the din flops.
if (self.write_size != self.word_size):
if port in self.write_ports:
wmask_pos[port] = vector(self.bank.bank_array_ur.x - self.data_dff_insts[port].width,
self.bank.height + max_gap_size + self.data_dff_insts[port].height)
self.wmask_dff_insts[port].place(wmask_pos[port], mirror="MX")
if len(self.all_ports)>1:
# Port 1
@ -119,6 +146,13 @@ class sram_1bank(sram_base):
data_pos[port] = vector(self.bank.bank_array_ur.x - self.data_dff_insts[port].width,
self.bank.height + max_gap_size + self.dff.height)
self.data_dff_insts[port].place(data_pos[port], mirror="MX")
# Add the write mask flops to the left of the din flops.
if (self.write_size != self.word_size):
if port in self.write_ports:
wmask_pos[port] = vector(self.bank.bank_array_ur.x - self.data_dff_insts[port].width,
self.bank.height + max_gap_size + self.data_dff_insts[port].height)
self.wmask_dff_insts[port].place(wmask_pos[port], mirror="MX")
else:
data_pos[port] = self.bank_inst.ur()
@ -326,10 +360,13 @@ class sram_1bank(sram_base):
offset=pin.center())
def graph_exclude_data_dff(self):
"""Removes data dff from search graph. """
#Data dffs are only for writing so are not useful for evaluating read delay.
"""Removes data dff and wmask dff (if applicable) from search graph. """
#Data dffs and wmask dffs are only for writing so are not useful for evaluating read delay.
for inst in self.data_dff_insts:
self.graph_inst_exclude.add(inst)
if (self.write_size != self.word_size):
for inst in self.wmask_dff_insts:
self.graph_inst_exclude.add(inst)
def graph_exclude_addr_dff(self):
"""Removes data dff from search graph. """

View File

@ -68,7 +68,10 @@ class sram_base(design, verilog, lef):
self.add_pin("web{}".format(port),"INPUT")
for port in self.all_ports:
self.add_pin("clk{}".format(port),"INPUT")
# add the optional write mask pins
if self.word_size != self.write_size:
for port in self.write_ports:
self.add_pin("wmask{}".format(port),"INPUT")
for port in self.read_ports:
for bit in range(self.word_size):
self.add_pin("DOUT{0}[{1}]".format(port,bit),"OUTPUT")
@ -150,9 +153,6 @@ class sram_base(design, verilog, lef):
rtr.route()
def compute_bus_sizes(self):
""" Compute the independent bus widths shared between two and four bank SRAMs """
@ -278,6 +278,8 @@ class sram_base(design, verilog, lef):
self.data_dff = dff_array(name="data_dff", rows=1, columns=self.word_size)
self.add_mod(self.data_dff)
self.wmask_dff = dff_array(name="wmask_dff", rows=1, columns=int(self.word_size/self.write_size))
self.add_mod(self.wmask_dff)
# Create the bank module (up to four are instantiated)
@ -303,6 +305,7 @@ class sram_base(design, verilog, lef):
self.control_logic_rw = self.mod_control_logic(num_rows=self.num_rows,
words_per_row=self.words_per_row,
word_size=self.word_size,
write_size = self.write_size,
sram=self,
port_type="rw")
self.add_mod(self.control_logic_rw)
@ -310,6 +313,7 @@ class sram_base(design, verilog, lef):
self.control_logic_w = self.mod_control_logic(num_rows=self.num_rows,
words_per_row=self.words_per_row,
word_size=self.word_size,
write_size=self.write_size,
sram=self,
port_type="w")
self.add_mod(self.control_logic_w)
@ -317,6 +321,7 @@ class sram_base(design, verilog, lef):
self.control_logic_r = self.mod_control_logic(num_rows=self.num_rows,
words_per_row=self.words_per_row,
word_size=self.word_size,
write_size=self.write_size,
sram=self,
port_type="r")
self.add_mod(self.control_logic_r)
@ -448,6 +453,29 @@ class sram_base(design, verilog, lef):
return insts
def create_wmask_dff(self):
""" Add and place all wmask flops """
num_wmask = int(self.word_size/self.write_size)
insts = []
for port in self.all_ports:
if port in self.write_ports:
insts.append(self.add_inst(name="wmask_dff{}".format(port),
mod=self.wmask_dff))
else:
insts.append(None)
continue
# inputs, outputs/output/bar
inputs = []
outputs = []
for bit in range(num_wmask):
inputs.append("wmask{}[{}]".format(port, bit))
outputs.append("BANK_WMASK{}[{}]".format(port, bit))
self.connect_inst(inputs + outputs + ["clk_buf{}".format(port), "vdd", "gnd"])
return insts
def create_control_logic(self):
""" Add control logic instances """

View File

@ -14,14 +14,18 @@ from sram_factory import factory
class sram_config:
""" This is a structure that is used to hold the SRAM configuration options. """
def __init__(self, word_size, num_words, num_banks=1, words_per_row=None):
def __init__(self, word_size, num_words, write_size = None, num_banks=1, words_per_row=None):
self.word_size = word_size
self.num_words = num_words
self.write_size = write_size
self.num_banks = num_banks
# This will get over-written when we determine the organization
self.words_per_row = words_per_row
if self.write_size == None:
self.write_size = self.word_size
self.compute_sizes()

View File

@ -34,19 +34,19 @@ class control_logic_test(openram_test):
OPTS.num_r_ports = 1
debug.info(1, "Testing sample for control_logic for multiport, only write control logic")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, port_type="rw")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, write_size=8, port_type="rw")
self.local_check(a)
# OPTS.num_rw_ports = 0
# OPTS.num_w_ports = 1
debug.info(1, "Testing sample for control_logic for multiport, only write control logic")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, port_type="w")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, write_size=8, port_type="w")
self.local_check(a)
# OPTS.num_w_ports = 0
# OPTS.num_r_ports = 1
debug.info(1, "Testing sample for control_logic for multiport, only read control logic")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, port_type="r")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=8, write_size=8, port_type="r")
self.local_check(a)
globals.end_openram()

View File

@ -24,7 +24,7 @@ class control_logic_test(openram_test):
# check control logic for single port
debug.info(1, "Testing sample for control_logic")
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=32)
a = factory.create(module_type="control_logic", num_rows=128, words_per_row=1, word_size=32, write_size=32)
self.local_check(a)
# run the test from the command line

View File

@ -0,0 +1,135 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California
# All rights reserved.
#
"""
Run regression tests/pex test on an extracted pinv to ensure pex functionality
with HSPICE.
"""
import unittest
from testutils import header,openram_test
import sys,os
sys.path.append(os.path.join(sys.path[0],".."))
import globals
from globals import OPTS
import debug
class hspice_pex_pinv_test(openram_test):
def runTest(self):
globals.init_openram("config_{0}".format(OPTS.tech_name))
import pinv
# load the hspice
OPTS.spice_name="hspice"
OPTS.analytical_delay = False
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
# generate the pinv
prev_purge_value = OPTS.purge_temp
OPTS.purge_temp = False # force set purge to false to save the sp file
debug.info(2, "Checking 1x size inverter")
tx = pinv.pinv(name="pinv", size=1)
tempgds = "{0}{1}.gds".format(OPTS.openram_temp,tx.name)
tx.gds_write(tempgds)
tempsp = "{0}{1}.sp".format(OPTS.openram_temp,tx.name)
tx.sp_write(tempsp)
# make sure that the library simulation is successful\
sp_delay = self.simulate_delay(test_module = tempsp,
top_level_name = tx.name)
if sp_delay is "Failed":
self.fail('Library Spice module did not behave as expected')
# now generate its pex file
pex_file = self.run_pex(tx)
OPTS.purge_temp = prev_purge_value # restore the old purge value
# generate simulation for pex, make sure the simulation is successful
pex_delay = self.simulate_delay(test_module = pex_file,
top_level_name = tx.name)
# make sure the extracted spice simulated
if pex_delay is "Failed":
self.fail('Pex file did not behave as expected')
# if pex data is bigger than original spice file then result is ok
# However this may not always be true depending on the netlist provided
# comment out for now
#debug.info(2,"pex_delay: {0}".format(pex_delay))
#debug.info(2,"sp_delay: {0}".format(sp_delay))
#assert pex_delay > sp_delay, "pex delay {0} is smaller than sp_delay {1}"\
#.format(pex_delay,sp_delay)
globals.end_openram()
def simulate_delay(self, test_module, top_level_name):
from characterizer import charutils
from charutils import parse_spice_list
# setup simulation
sim_file = OPTS.openram_temp + "stim.sp"
log_file_name = "timing"
test_sim = self.write_simulation(sim_file, test_module, top_level_name)
test_sim.run_sim()
delay = parse_spice_list(log_file_name, "pinv_delay")
return delay
def write_simulation(self, sim_file, cir_file, top_module_name):
""" write pex spice simulation for a pinv test"""
import tech
from characterizer import measurements, stimuli
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
sim_file = open(sim_file, "w")
simulation = stimuli(sim_file,corner)
# library files
simulation.write_include(cir_file)
# supply voltages
simulation.gen_constant(sig_name ="vdd",
v_val = tech.spice["nom_supply_voltage"])
simulation.gen_constant(sig_name = "gnd",
v_val = "0v")
run_time = tech.spice["feasible_period"] * 4
# input voltage
clk_period = tech.spice["feasible_period"]
simulation.gen_pwl(sig_name ="input",
clk_times = [clk_period,clk_period],
data_values = [1,0],
period = clk_period,
slew = 0.001*tech.spice["feasible_period"],
setup = 0)
# instantiation of simulated pinv
simulation.inst_model(pins = ["input", "output", "vdd", "gnd"],
model_name = top_module_name)
# delay measurement
delay_measure = measurements.delay_measure(measure_name = "pinv_delay",
trig_name = "input",
targ_name = "output",
trig_dir_str = "FALL",
targ_dir_str = "RISE",
has_port = False)
trig_td = trag_td = 0.01 * run_time
rest_info = trig_td,trag_td,tech.spice["nom_supply_voltage"]
delay_measure.write_measure(simulation, rest_info)
simulation.write_control(end_time = run_time)
sim_file.close()
return simulation
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main()

View File

@ -0,0 +1,137 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California
# All rights reserved.
#
"""
Run regression tests/pex test on an extracted pinv to ensure pex functionality
with Ngspice.
"""
import unittest
from testutils import header,openram_test
import sys,os
sys.path.append(os.path.join(sys.path[0],".."))
import globals
from globals import OPTS
import debug
class ngspice_pex_pinv_test(openram_test):
def runTest(self):
globals.init_openram("config_{0}".format(OPTS.tech_name))
import pinv
# load the ngspice
OPTS.spice_name="ngspice"
OPTS.analytical_delay = False
# This is a hack to reload the characterizer __init__ with the spice version
from importlib import reload
import characterizer
reload(characterizer)
# generate the pinv module
prev_purge_value = OPTS.purge_temp
OPTS.purge_temp = False # force set purge to false to save the sp file
debug.info(2, "Checking 1x size inverter")
tx = pinv.pinv(name="pinv", size=1)
tempgds = "{0}{1}.gds".format(OPTS.openram_temp,tx.name)
tx.gds_write(tempgds)
tempsp = "{0}{1}.sp".format(OPTS.openram_temp,tx.name)
tx.sp_write(tempsp)
# make sure that the library simulation is successful
sp_delay = self.simulate_delay(test_module = tempsp,
top_level_name = tx.name)
if sp_delay is "Failed":
self.fail('Library Spice module did not behave as expected')
# now generate its pex file
pex_file = self.run_pex(tx)
OPTS.purge_temp = prev_purge_value # restore the old purge value
# generate simulation for pex, make sure the simulation is successful
pex_delay = self.simulate_delay(test_module = pex_file,
top_level_name = tx.name)
# make sure the extracted spice simulated
if pex_delay is "Failed":
self.fail('Pex file did not behave as expected')
# if pex data is bigger than original spice file then result is ok
# However this may not always be true depending on the netlist provided
# comment out for now
#debug.info(2,"pex_delay: {0}".format(pex_delay))
#debug.info(2,"sp_delay: {0}".format(sp_delay))
#assert pex_delay > sp_delay, "pex delay {0} is smaller than sp_delay {1}"\
#.format(pex_delay,sp_delay)
globals.end_openram()
def simulate_delay(self, test_module, top_level_name):
from characterizer import charutils
from charutils import parse_spice_list
# setup simulation
sim_file = OPTS.openram_temp + "stim.sp"
log_file_name = "timing"
test_sim = self.write_simulation(sim_file, test_module, top_level_name)
test_sim.run_sim()
delay = parse_spice_list(log_file_name, "pinv_delay")
return delay
def write_simulation(self, sim_file, cir_file, top_module_name):
""" write pex spice simulation for a pinv test"""
import tech
from characterizer import measurements, stimuli
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
sim_file = open(sim_file, "w")
simulation = stimuli(sim_file,corner)
# library files
simulation.write_include(cir_file)
# supply voltages
simulation.gen_constant(sig_name ="vdd",
v_val = tech.spice["nom_supply_voltage"])
# The scn4m_subm and ngspice combination will have a gnd source error:
# "Fatal error: instance vgnd is a shorted VSRC"
# However, remove gnd power for all techa pass for this test
# simulation.gen_constant(sig_name = "gnd",
# v_val = "0v")
run_time = tech.spice["feasible_period"] * 4
# input voltage
clk_period = tech.spice["feasible_period"]
simulation.gen_pwl(sig_name ="input",
clk_times = [clk_period,clk_period],
data_values = [1,0],
period = clk_period,
slew = 0.001*tech.spice["feasible_period"],
setup = 0)
# instantiation of simulated pinv
simulation.inst_model(pins = ["input", "output", "vdd", "gnd"],
model_name = top_module_name)
# delay measurement
delay_measure = measurements.delay_measure(measure_name = "pinv_delay",
trig_name = "input",
targ_name = "output",
trig_dir_str = "FALL",
targ_dir_str = "RISE",
has_port = False)
trig_td = trag_td = 0.01 * run_time
rest_info = trig_td,trag_td,tech.spice["nom_supply_voltage"]
delay_measure.write_measure(simulation, rest_info)
simulation.write_control(end_time = run_time)
sim_file.close()
return simulation
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main()

View File

@ -0,0 +1,110 @@
`define assert(signal, value) \
if (!(signal === value)) begin \
$display("ASSERTION FAILED in %m: signal != value"); \
$finish;\
end
module sram_1rw_wmask_tb;
reg clk;
reg [3:0] addr0;
reg [1:0] din0;
reg csb0;
reg web0;
reg [1:0] wmask0;
wire [1:0] dout0;
sram_2b_16_1rw_freepdk45 U0 (.DIN0(din0),
.DOUT0(dout0),
.ADDR0(addr0),
.csb0(csb0),
.web0(web0),
.wmask0(wmask0),
.clk0(clk)
);
initial
begin
//$monitor("%g addr0=%b din0=%b dout0=%b",
// $time, addr0, din0, dout0);
clk = 1;
csb0 = 1;
web0 = 1;
wmask0 = 2'b01;
addr0 = 0;
din0 = 0;
// write
#10 din0=2'b10;
addr0=4'h1;
web0 = 0;
csb0 = 0;
wmask0 = 2'b10;
// read
#10 din0=2'b11;
addr0=4'h1;
web0 = 1;
csb0 = 0;
#10 `assert(dout0, 2'b1x)
// write another
#10 din0=2'b01;
addr0=4'hC;
web0 = 0;
csb0 = 0;
wmask0 = 2'b01;
// read undefined
#10 din0=2'b11;
addr0=4'h0;
web0 = 1;
csb0 = 0;
wmask0 = 2'b01;
#10 `assert(dout0, 2'bxx)
// read defined
din0=2'b11;
addr0=4'hC;
web0 = 1;
csb0 = 0;
wmask0 = 2'b01;
#10 `assert(dout0, 2'bx1)
// write another
din0=2'b01;
addr0=4'h1;
web0 = 0;
csb0 = 0;
// read defined
#10 din0=2'b11;
addr0=4'h1;
web0 = 1;
csb0 = 0;
#10 `assert(dout0, 2'b11)
// read undefined
din0=2'b11;
addr0=4'h0;
web0 = 1;
csb0 = 0;
#10 `assert(dout0, 2'bxx)
#10 $finish;
end
always
#5 clk = !clk;
endmodule

View File

@ -65,6 +65,17 @@ class openram_test(unittest.TestCase):
if OPTS.purge_temp:
self.cleanup()
def run_pex(self, a, output=None):
if output == None:
output = OPTS.openram_temp + a.name + ".pex.netlist"
tempspice = "{0}{1}.sp".format(OPTS.openram_temp,a.name)
tempgds = "{0}{1}.gds".format(OPTS.openram_temp,a.name)
import verify
result=verify.run_pex(a.name, tempgds, tempspice, output=output, final_verification=False)
if result != 0:
self.fail("PEX ERROR: {}".format(a.name))
return output
def find_feasible_test_period(self, delay_obj, sram, load, slew):
"""Creates a delay simulation to determine a feasible period for the functional tests to run.
@ -300,16 +311,18 @@ def header(filename, technology):
def debugTestRunner(post_mortem=None):
"""unittest runner doing post mortem debugging on failing tests"""
if post_mortem is None:
if post_mortem is None and not OPTS.purge_temp:
post_mortem = pdb.post_mortem
class DebugTestResult(unittest.TextTestResult):
def addError(self, test, err):
# called before tearDown()
traceback.print_exception(*err)
post_mortem(err[2])
if post_mortem:
post_mortem(err[2])
super(DebugTestResult, self).addError(test, err)
def addFailure(self, test, err):
traceback.print_exception(*err)
post_mortem(err[2])
if post_mortem:
post_mortem(err[2])
super(DebugTestResult, self).addFailure(test, err)
return unittest.TextTestRunner(resultclass=DebugTestResult)

View File

@ -138,9 +138,12 @@ def write_calibre_pex_script(cell_name, extract, output, final_verification):
# check if lvs report has been done
# if not run drc and lvs
if not os.path.isfile(cell_name + ".lvs.report"):
gds_name = OPTS.openram_temp +"/"+ cell_name + ".gds"
sp_name = OPTS.openram_temp +"/"+ cell_name + ".sp"
run_drc(cell_name, gds_name)
run_lvs(cell_name, gds_name, sp_name)
from tech import drc
pex_rules = drc["xrc_rules"]
pex_runset = {
'pexRulesFile': pex_rules,
@ -317,7 +320,7 @@ def run_pex(cell_name, gds_name, sp_name, output=None, final_verification=False)
global num_pex_runs
num_pex_runs += 1
write_calibre_pex_script()
write_calibre_pex_script(cell_name,True,output,final_verification)
(outfile, errfile, resultsfile) = run_script(cell_name, "pex")

View File

@ -257,9 +257,9 @@ def run_pex(name, gds_name, sp_name, output=None, final_verification=False):
global num_pex_runs
num_pex_runs += 1
debug.warning("PEX using magic not implemented.")
return 1
#debug.warning("PEX using magic not implemented.")
#return 1
os.chdir(OPTS.openram_temp)
from tech import drc
if output == None:
@ -271,25 +271,67 @@ def run_pex(name, gds_name, sp_name, output=None, final_verification=False):
run_drc(name, gds_name)
run_lvs(name, gds_name, sp_name)
"""
2. magic can perform extraction with the following:
#!/bin/sh
rm -f $1.ext
rm -f $1.spice
magic -dnull -noconsole << EOF
tech load SCN3ME_SUBM.30
#scalegrid 1 2
gds rescale no
gds polygon subcell true
gds warning default
gds read $1
extract
ext2spice scale off
ext2spice
quit -noprompt
EOF
"""
# pex_fix did run the pex using a script while dev orignial method
# use batch mode.
# the dev old code using batch mode does not run and is split into functions
#pex_runset = write_batch_pex_rule(gds_name,name,sp_name,output)
pex_runset = write_script_pex_rule(gds_name,name,output)
errfile = "{0}{1}.pex.err".format(OPTS.openram_temp, name)
outfile = "{0}{1}.pex.out".format(OPTS.openram_temp, name)
# bash mode command from dev branch
#batch_cmd = "{0} -gui -pex {1}pex_runset -batch 2> {2} 1> {3}".format(OPTS.pex_exe,
# OPTS.openram_temp,
# errfile,
# outfile)
script_cmd = "{0} 2> {1} 1> {2}".format(pex_runset,
errfile,
outfile)
cmd = script_cmd
debug.info(2, cmd)
os.system(cmd)
# rename technology models
pex_nelist = open(output, 'r')
s = pex_nelist.read()
pex_nelist.close()
s = s.replace('pfet','p')
s = s.replace('nfet','n')
f = open(output, 'w')
f.write(s)
f.close()
# also check the output file
f = open(outfile, "r")
results = f.readlines()
f.close()
out_errors = find_error(results)
debug.check(os.path.isfile(output),"Couldn't find PEX extracted output.")
correct_port(name,output,sp_name)
return out_errors
def write_batch_pex_rule(gds_name,name,sp_name,output):
"""
The dev branch old batch mode runset
2. magic can perform extraction with the following:
#!/bin/sh
rm -f $1.ext
rm -f $1.spice
magic -dnull -noconsole << EOF
tech load SCN3ME_SUBM.30
#scalegrid 1 2
gds rescale no
gds polygon subcell true
gds warning default
gds read $1
extract
ext2spice scale off
ext2spice
quit -noprompt
EOF
"""
pex_rules = drc["xrc_rules"]
pex_runset = {
'pexRulesFile': pex_rules,
@ -307,42 +349,89 @@ def run_pex(name, gds_name, sp_name, output=None, final_verification=False):
}
# write the runset file
f = open(OPTS.openram_temp + "pex_runset", "w")
for k in sorted(pex_runset.iterkeys()):
file = OPTS.openram_temp + "pex_runset"
f = open(file, "w")
for k in sorted(pex_runset.keys()):
f.write("*{0}: {1}\n".format(k, pex_runset[k]))
f.close()
return file
# run pex
cwd = os.getcwd()
os.chdir(OPTS.openram_temp)
errfile = "{0}{1}.pex.err".format(OPTS.openram_temp, name)
outfile = "{0}{1}.pex.out".format(OPTS.openram_temp, name)
def write_script_pex_rule(gds_name,cell_name,output):
global OPTS
run_file = OPTS.openram_temp + "run_pex.sh"
f = open(run_file, "w")
f.write("#!/bin/sh\n")
f.write("{} -dnull -noconsole << eof\n".format(OPTS.drc_exe[1]))
f.write("gds polygon subcell true\n")
f.write("gds warning default\n")
f.write("gds read {}\n".format(gds_name))
f.write("load {}\n".format(cell_name))
f.write("select top cell\n")
f.write("expand\n")
f.write("port makeall\n")
extract = True
if not extract:
pre = "#"
else:
pre = ""
f.write(pre+"extract\n".format(cell_name))
#f.write(pre+"ext2spice hierarchy on\n")
#f.write(pre+"ext2spice format ngspice\n")
#f.write(pre+"ext2spice renumber off\n")
#f.write(pre+"ext2spice scale off\n")
#f.write(pre+"ext2spice blackbox on\n")
f.write(pre+"ext2spice subcircuit top on\n")
#f.write(pre+"ext2spice global off\n")
f.write(pre+"ext2spice {}\n".format(cell_name))
f.write("quit -noprompt\n")
f.write("eof\n")
f.write("mv {0}.spice {1}\n".format(cell_name,output))
cmd = "{0} -gui -pex {1}pex_runset -batch 2> {2} 1> {3}".format(OPTS.pex_exe,
OPTS.openram_temp,
errfile,
outfile)
debug.info(2, cmd)
os.system(cmd)
os.chdir(cwd)
# also check the output file
f = open(outfile, "r")
results = f.readlines()
f.close()
os.system("chmod u+x {}".format(run_file))
return run_file
def find_error(results):
# Errors begin with "ERROR:"
test = re.compile("ERROR:")
stdouterrors = list(filter(test.search, results))
for e in stdouterrors:
debug.error(e.strip("\n"))
out_errors = len(stdouterrors)
debug.check(os.path.isfile(output),"Couldn't find PEX extracted output.")
return out_errors
def correct_port(name, output_file_name, ref_file_name):
pex_file = open(output_file_name, "r")
contents = pex_file.read()
# locate the start of circuit definition line
match = re.search(".subckt " + str(name) + ".*", contents)
match_index_start = match.start()
pex_file.seek(match_index_start)
rest_text = pex_file.read()
# locate the end of circuit definition line
match = re.search(r'\n', rest_text)
match_index_end = match.start()
# store the unchanged part of pex file in memory
pex_file.seek(0)
part1 = pex_file.read(match_index_start)
pex_file.seek(match_index_start + match_index_end)
part2 = pex_file.read()
pex_file.close()
# obtain the correct definition line from the original spice file
sp_file = open(ref_file_name, "r")
contents = sp_file.read()
circuit_title = re.search(".SUBCKT " + str(name) + ".*\n", contents)
circuit_title = circuit_title.group()
sp_file.close()
# write the new pex file with info in the memory
output_file = open(output_file_name, "w")
output_file.write(part1)
output_file.write(circuit_title)
output_file.write(part2)
output_file.close()
def print_drc_stats():
debug.info(1,"DRC runs: {0}".format(num_drc_runs))
def print_lvs_stats():