Add caches to GDS related functions in utils.py

* Cache the GDS reader.
 * Cache the properties (size / pins / etc) measured from the GDS files.

Signed-off-by: Tim 'mithro' Ansell <me@mith.ro>
This commit is contained in:
Tim 'mithro' Ansell 2020-10-31 16:08:59 -07:00
parent 6514bcb4c1
commit 95d77119c7
1 changed files with 62 additions and 34 deletions

View File

@ -4,10 +4,12 @@
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os
import math
import gdsMill
import tech
import math
import globals
import debug
from vector import vector
@ -57,10 +59,11 @@ def auto_measure_libcell(pin_list, name, units, lpp):
Return these as a set of properties including the cell width/height too.
"""
cell_gds = OPTS.openram_tech + "gds_lib/" + str(name) + ".gds"
cell_vlsi = gdsMill.VlsiLayout(units=units)
reader = gdsMill.Gds2reader(cell_vlsi)
reader.loadFromFile(cell_gds)
cell_vlsi = _get_gds_reader(units, cell_gds)
# FIXME: This duplicates a lot of functionality of get_gds_size and
# get_gds_pins, it should probably just call those functions?
cell = {}
measure_result = cell_vlsi.getLayoutBorder(lpp[0])
if measure_result:
@ -73,22 +76,45 @@ def auto_measure_libcell(pin_list, name, units, lpp):
return cell
_GDS_READER_CACHE = {}
def _get_gds_reader(units, gds_filename):
gds_absname = os.path.realpath(gds_filename)
k = (units, gds_absname)
try:
return _GDS_READER_CACHE[k]
except KeyError:
debug.info(4, "Creating VLSI layout from {}".format(gds_absname))
cell_vlsi = gdsMill.VlsiLayout(units=units)
reader = gdsMill.Gds2reader(cell_vlsi)
reader.loadFromFile(gds_absname)
_GDS_READER_CACHE[k] = cell_vlsi
return cell_vlsi
_GDS_SIZE_CACHE = {}
def get_gds_size(name, gds_filename, units, lpp):
"""
Open a GDS file and return the size from either the
bounding box or a border layer.
"""
debug.info(4, "Creating VLSI layout for {}".format(name))
cell_vlsi = gdsMill.VlsiLayout(units=units)
reader = gdsMill.Gds2reader(cell_vlsi)
reader.loadFromFile(gds_filename)
k = (name, os.path.realpath(gds_filename), units, lpp)
try:
return _GDS_SIZE_CACHE[k]
except KeyError:
cell_vlsi = _get_gds_reader(units, gds_filename)
measure_result = cell_vlsi.getLayoutBorder(lpp)
if not measure_result:
debug.info(2, "Layout border failed. Trying to measure size for {}".format(name))
measure_result = cell_vlsi.measureSize(name)
# returns width,height
return measure_result
measure_result = cell_vlsi.getLayoutBorder(lpp)
if not measure_result:
debug.info(2, "Layout border failed. Trying to measure size for {}".format(name))
measure_result = cell_vlsi.measureSize(name)
_GDS_SIZE_CACHE[k] = measure_result
# returns width,height
return measure_result
def get_libcell_size(name, units, lpp):
@ -101,27 +127,33 @@ def get_libcell_size(name, units, lpp):
return(get_gds_size(name, cell_gds, units, lpp))
_GDS_PINS_CACHE = {}
def get_gds_pins(pin_names, name, gds_filename, units):
"""
Open a GDS file and find the pins in pin_names as text on a given layer.
Return these as a rectangle layer pair for each pin.
"""
cell_vlsi = gdsMill.VlsiLayout(units=units)
reader = gdsMill.Gds2reader(cell_vlsi)
reader.loadFromFile(gds_filename)
k = (tuple(pin_names), name, os.path.realpath(gds_filename), units)
try:
return dict(_GDS_PINS_CACHE[k])
except KeyError:
cell_vlsi = _get_gds_reader(units, gds_filename)
cell = {}
for pin_name in pin_names:
cell[str(pin_name)] = []
pin_list = cell_vlsi.getPinShape(str(pin_name))
for pin_shape in pin_list:
(lpp, boundary) = pin_shape
rect = [vector(boundary[0], boundary[1]),
vector(boundary[2], boundary[3])]
# this is a list because other cells/designs
# may have must-connect pins
cell[str(pin_name)].append(pin_layout(pin_name, rect, lpp))
return cell
cell = {}
for pin_name in pin_names:
cell[str(pin_name)] = []
pin_list = cell_vlsi.getPinShape(str(pin_name))
for pin_shape in pin_list:
(lpp, boundary) = pin_shape
rect = [vector(boundary[0], boundary[1]),
vector(boundary[2], boundary[3])]
# this is a list because other cells/designs
# may have must-connect pins
cell[str(pin_name)].append(pin_layout(pin_name, rect, lpp))
_GDS_PINS_CACHE[k] = cell
return dict(cell)
def get_libcell_pins(pin_list, name, units):
@ -132,7 +164,3 @@ def get_libcell_pins(pin_list, name, units):
cell_gds = OPTS.openram_tech + "gds_lib/" + str(name) + ".gds"
return(get_gds_pins(pin_list, name, cell_gds, units))