Cleaned code to remove validation during training.

This commit is contained in:
Hunter Nichols 2020-12-07 14:22:53 -08:00
parent 5f4a2f0231
commit 6e7d1695b5
2 changed files with 57 additions and 47 deletions

View File

@ -191,17 +191,39 @@ def get_scaled_data(file_name, sample_dir=None):
all_data = get_data(file_name)
# Data is scaled by max/min and data format is changed to points vs feature lists
self_scaled_data = [[] for _ in range(len(all_data[0]))]
self_maxs,self_mins = [],[]
for feature_list in all_data:
max_val = max(feature_list)
self_maxs.append(max_val)
min_val = min(feature_list)
self_mins.append(min_val)
for i in range(len(feature_list)):
self_scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
self_scaled_data = scale_data_and_transform(all_data)
return np.asarray(self_scaled_data)
samples = np.asarray(self_scaled_data)
features, labels = samples[:, :-1], samples[:,-1:]
return features, labels
def scale_data_and_transform(data):
"""
Assume data is a list of features, change to a list of points and max/min scale
"""
scaled_data = [[] for _ in range(len(data[0]))]
for feature_list in data:
max_val = max(feature_list)
min_val = min(feature_list)
for i in range(len(feature_list)):
scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
return scaled_data
def scale_input_datapoint(point, data_dir):
"""
Input data has no output and needs to be scaled like the model inputs during
training.
"""
maxs, mins, avgs = get_max_min_from_datasets(data_dir)
debug.info(1, "maxs={}".format(maxs))
debug.info(1, "mins={}".format(mins))
debug.info(1, "point={}".format(point))
scaled_point = []
for feature, mx, mn in zip(point, maxs, mins):
scaled_point.append((feature-mn)/(mx-mn))
return scaled_point
def unscale_data(data, ref_dir, pos=None):
if ref_dir:

View File

@ -28,42 +28,30 @@ class linear_regression():
test_sets = []
file_path = data_dir +'/'+data_filename
num_points_train = 7
scaled_inputs = np.asarray(scale_input_datapoint(model_inputs, data_dir))
samples = get_scaled_data(file_path, data_dir)
features, labels = get_scaled_data(file_path, data_dir)
self.train_model(features, labels)
scaled_pred = model_prediction(model_inputs)
pred = unscale_data(scaled_pred.tolist(), data_dir)
debug.info(1,"Unscaled Prediction = {}".format(pred))
return pred
non_ip_samples, unused_samples = sample_from_file(num_points_train, file_path, data_dir)
nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:]
nip_test_feature_subset, nip_test_labels_subset = unused_samples[:, :-1], unused_samples[:,-1:]
train_sets = [(nip_features_subset, nip_labels_subset)]
test_sets = [(nip_test_feature_subset, nip_test_labels_subset)]
runs_per_model = 1
for train_tuple, test_tuple in zip(train_sets, test_sets):
train_x, train_y = train_tuple
test_x, test_y = test_tuple
errors = {}
min_train_set = None
for _ in range(runs_per_model):
new_error = self.run_model(train_x, train_y, test_x, test_y, data_dir)
debug.info(1, "Model Error: {}".format(new_error))
def train_model(self, x,y,test_x,test_y, reference_dir):
model = LinearRegression()
model.fit(x, y)
pred = model.predict(test_x)
#print(pred)
unscaled_labels = unscale_data(test_y.tolist(), reference_dir)
unscaled_preds = unscale_data(pred.tolist(), reference_dir)
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
avg_err = abs_error(unscaled_labels, unscaled_preds)
max_err = max_error(unscaled_labels, unscaled_preds)
min_err = min_error(unscaled_labels, unscaled_preds)
errors = {"avg_error": avg_err, "max_error":max_err, "min_error":min_err}
return errors
def train_model(self, features, labels):
"""
Supervised training of model.
"""
self.model = LinearRegression()
self.model.fit(features, labels)
def model_prediction(self, features):
"""
Have the model perform a prediction and unscale the prediction
as the model is trained with scaled values.
"""
pred = self.model.predict(features)
debug.info(1, "pred={}".format(pred))
return pred