Added function to get all data and scale vs just a portion

This commit is contained in:
Hunter Nichols 2020-12-07 13:11:04 -08:00
parent dcd20a250a
commit 5f4a2f0231
3 changed files with 56 additions and 13 deletions

View File

@ -1,4 +1,12 @@
#import diversipy as dp
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import debug
import csv
import math
import numpy as np
@ -131,6 +139,11 @@ def rescale_data(data, old_maxs, old_mins, new_maxs, new_mins):
return data_new_scaling
def sample_from_file(num_samples, file_name, sample_dir=None):
"""
Get a portion of the data from CSV file and scale it based on max/min of dataset.
Duplicate samples are trimmed.
"""
if sample_dir:
maxs,mins,avgs = get_max_min_from_datasets(sample_dir)
else:
@ -142,10 +155,7 @@ def sample_from_file(num_samples, file_name, sample_dir=None):
# Get algorithms sample points, assuming hypercube for now
num_labels = 1
inp_dims = len(all_data) - num_labels
#samples = dp.hycusampling.lhd_matrix(num_samples, inp_dims)/num_samples
#samples = dp.hycusampling.halton(num_samples, inp_dims)
#samples = dp.hycusampling.random_uniform(num_samples, inp_dims)
samples = None
samples = np.random.rand(num_samples, inp_dims)
# Scale data from file
@ -169,6 +179,30 @@ def sample_from_file(num_samples, file_name, sample_dir=None):
return np.asarray(sampled_data), np.asarray(unused_new_scaling)
def get_scaled_data(file_name, sample_dir=None):
"""Get data from CSV file and scale it based on max/min of dataset"""
if sample_dir:
maxs,mins,avgs = get_max_min_from_datasets(sample_dir)
else:
maxs,mins,avgs = [], [], []
# Get data
all_data = get_data(file_name)
# Data is scaled by max/min and data format is changed to points vs feature lists
self_scaled_data = [[] for _ in range(len(all_data[0]))]
self_maxs,self_mins = [],[]
for feature_list in all_data:
max_val = max(feature_list)
self_maxs.append(max_val)
min_val = min(feature_list)
self_mins.append(min_val)
for i in range(len(feature_list)):
self_scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
return np.asarray(self_scaled_data)
def unscale_data(data, ref_dir, pos=None):
if ref_dir:
maxs,mins,avgs = get_max_min_from_datasets(ref_dir)

View File

@ -587,7 +587,11 @@ class lib:
if self.use_model:
#FIXME: ML models only designed for delay. Cannot produce all values for Lib
d = linear_regression()
char_results = d.get_prediction()
model_inputs = [OPTS.num_words,
OPTS.word_size,
OPTS.words_per_row,
self.sram.width * self.sram.height]
char_results = d.get_prediction(model_inputs)
#self.d = elmore(self.sram, self.sp_file, self.corner)
# char_results = self.d.analytical_delay(self.slews,self.loads)

View File

@ -19,13 +19,18 @@ data_dir = tech_path+'/'+OPTS.tech_name+relative_data_path
class linear_regression():
def get_prediction(self):
def __init__(self):
self.model = None
def get_prediction(self, model_inputs):
train_sets = []
test_sets = []
file_path = data_dir +'/'+data_filename
num_points_train = 5
num_points_train = 7
samples = get_scaled_data(file_path, data_dir)
non_ip_samples, unused_samples = sample_from_file(num_points_train, file_path, data_dir)
nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:]
@ -46,7 +51,7 @@ class linear_regression():
new_error = self.run_model(train_x, train_y, test_x, test_y, data_dir)
debug.info(1, "Model Error: {}".format(new_error))
def run_model(x,y,test_x,test_y, reference_dir):
def train_model(self, x,y,test_x,test_y, reference_dir):
model = LinearRegression()
model.fit(x, y)
@ -56,9 +61,9 @@ class linear_regression():
unscaled_labels = unscale_data(test_y.tolist(), reference_dir)
unscaled_preds = unscale_data(pred.tolist(), reference_dir)
unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds))))
avg_error = abs_error(unscaled_labels, unscaled_preds)
max_error = max_error(unscaled_labels, unscaled_preds)
min_error = min_error(unscaled_labels, unscaled_preds)
avg_err = abs_error(unscaled_labels, unscaled_preds)
max_err = max_error(unscaled_labels, unscaled_preds)
min_err = min_error(unscaled_labels, unscaled_preds)
errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error}
errors = {"avg_error": avg_err, "max_error":max_err, "min_error":min_err}
return errors