Made delay.py a child of simulation.py. Removed duplicate code in delay and changed some in simulation

This commit is contained in:
Hunter Nichols 2018-10-09 17:44:28 -07:00
parent a3bec5518c
commit 3ac2d29940
5 changed files with 71 additions and 234 deletions

View File

@ -7,8 +7,9 @@ from .trim_spice import *
from .charutils import *
import utils
from globals import OPTS
from .simulation import simulation
class delay():
class delay(simulation):
"""Functions to measure the delay and power of an SRAM at a given address and
data bit.
@ -26,27 +27,14 @@ class delay():
"""
def __init__(self, sram, spfile, corner):
self.sram = sram
self.name = sram.name
self.word_size = self.sram.word_size
self.addr_size = self.sram.addr_size
self.num_cols = self.sram.num_cols
self.num_rows = self.sram.num_rows
self.num_banks = self.sram.num_banks
self.sp_file = spfile
self.total_ports = self.sram.total_ports
self.total_write = self.sram.total_write
self.total_read = self.sram.total_read
self.read_index = self.sram.read_index
self.write_index = self.sram.write_index
self.port_id = self.sram.port_id
simulation.__init__(self, sram, spfile, corner)
# These are the member variables for a simulation
self.targ_read_ports = []
self.targ_write_ports = []
self.period = 0
self.set_load_slew(0,0)
self.set_corner(corner)
self.create_port_names()
self.create_signal_names()
#Create global measure names. Should maybe be an input at some point.
@ -66,34 +54,6 @@ class delay():
#This is TODO once multiport control has been finalized.
#self.control_name = "CSB"
def create_port_names(self):
"""Generates the port names to be used in characterization and sets default simulation target ports"""
self.write_ports = []
self.read_ports = []
self.total_port_num = OPTS.num_rw_ports + OPTS.num_w_ports + OPTS.num_r_ports
#save a member variable to avoid accessing global. readwrite ports have different control signals.
self.readwrite_port_num = OPTS.num_rw_ports
#Generate the port names. readwrite ports are required to be added first for this to work.
for readwrite_port_num in range(OPTS.num_rw_ports):
self.read_ports.append(readwrite_port_num)
self.write_ports.append(readwrite_port_num)
#This placement is intentional. It makes indexing input data easier. See self.data_values
for write_port_num in range(OPTS.num_rw_ports, OPTS.num_rw_ports+OPTS.num_w_ports):
self.write_ports.append(write_port_num)
for read_port_num in range(OPTS.num_rw_ports+OPTS.num_w_ports, OPTS.num_rw_ports+OPTS.num_w_ports+OPTS.num_r_ports):
self.read_ports.append(read_port_num)
#Set the default target ports for simulation. Default is all the ports.
self.targ_read_ports = self.read_ports
self.targ_write_ports = self.write_ports
def set_corner(self,corner):
""" Set the corner values """
self.corner = corner
(self.process, self.vdd_voltage, self.temperature) = corner
def set_load_slew(self,load,slew):
""" Set the load and slew """
self.load = load
@ -113,9 +73,9 @@ class delay():
debug.error("Given probe_data is not an integer to specify a data bit",1)
#Adding port options here which the characterizer cannot handle. Some may be added later like ROM
if len(self.read_ports) == 0:
if len(self.read_index) == 0:
debug.error("Characterizer does not currently support SRAMs without read ports.",1)
if len(self.write_ports) == 0:
if len(self.write_index) == 0:
debug.error("Characterizer does not currently support SRAMs without write ports.",1)
def write_generic_stimulus(self):
@ -129,12 +89,12 @@ class delay():
self.sf.write("\n* Instantiation of the SRAM\n")
self.stim.inst_sram(sram=self.sram,
port_signal_names=(self.addr_name,self.din_name,self.dout_name),
port_info=(self.total_port_num,self.write_ports,self.read_ports),
port_info=(self.total_ports,self.write_index,self.read_index),
abits=self.addr_size,
dbits=self.word_size,
sram_name=self.name)
self.sf.write("\n* SRAM output loads\n")
for port in self.read_ports:
for port in self.read_index:
for i in range(self.word_size):
self.sf.write("CD{0}{1} {2}{0}_{1} 0 {3}f\n".format(port,i,self.dout_name,self.load))
@ -172,7 +132,7 @@ class delay():
self.gen_control()
self.sf.write("\n* Generation of Port clock signal\n")
for port in range(self.total_port_num):
for port in range(self.total_ports):
self.stim.gen_pulse(sig_name="CLK{0}".format(port),
v1=0,
v2=self.vdd_voltage,
@ -214,24 +174,24 @@ class delay():
# generate data and addr signals
self.sf.write("\n* Generation of data and address signals\n")
for write_port in self.write_ports:
for write_port in self.write_index:
for i in range(self.word_size):
self.stim.gen_constant(sig_name="{0}{1}_{2} ".format(self.din_name,write_port, i),
v_val=0)
for port in range(self.total_port_num):
for port in range(self.total_ports):
for i in range(self.addr_size):
self.stim.gen_constant(sig_name="{0}{1}_{2}".format(self.addr_name,port, i),
v_val=0)
# generate control signals
self.sf.write("\n* Generation of control signals\n")
for port in range(self.total_port_num):
for port in range(self.total_ports):
self.stim.gen_constant(sig_name="CSB{0}".format(port), v_val=self.vdd_voltage)
if port in self.write_ports and port in self.read_ports:
if port in self.write_index and port in self.read_index:
self.stim.gen_constant(sig_name="WEB{0}".format(port), v_val=self.vdd_voltage)
self.sf.write("\n* Generation of global clock signal\n")
for port in range(self.total_port_num):
for port in range(self.total_ports):
self.stim.gen_constant(sig_name="CLK{0}".format(port), v_val=0)
self.write_power_measures()
@ -360,10 +320,9 @@ class delay():
double the period until we find a valid period to use as a
starting point.
"""
debug.check(port in self.read_ports, "Characterizer requires a read port to determine a period.")
debug.check(port in self.read_index, "Characterizer requires a read port to determine a period.")
feasible_period = float(tech.spice["feasible_period"])
#feasible_period = float(2.5)#What happens if feasible starting point is wrong?
time_out = 9
while True:
time_out -= 1
@ -406,19 +365,18 @@ class delay():
Loops through all read ports determining the feasible period and collecting
delay information from each port.
"""
feasible_delays = [{} for i in range(self.total_port_num)]
self.period = float(tech.spice["feasible_period"])
feasible_delays = [{} for i in range(self.total_ports)]
#Get initial feasible delays from first port
feasible_delays[self.read_ports[0]] = self.find_feasible_period_one_port(self.read_ports[0])
feasible_delays[self.read_index[0]] = self.find_feasible_period_one_port(self.read_index[0])
previous_period = self.period
#Loops through all the ports checks if the feasible period works. Everything restarts it if does not.
#Write ports do not produce delays which is why they are not included here.
i = 1
while i < len(self.read_ports):
port = self.read_ports[i]
while i < len(self.read_index):
port = self.read_index[i]
#Only extract port values from the specified port, not the entire results.
feasible_delays[port].update(self.find_feasible_period_one_port(port))
#Function sets the period. Restart the entire process if period changes to collect accurate delays
@ -461,7 +419,7 @@ class delay():
#Sanity Check
debug.check(self.period > 0, "Target simulation period non-positive")
result = [{} for i in range(self.total_port_num)]
result = [{} for i in range(self.total_ports)]
# Checking from not data_value to data_value
self.write_delay_stimulus()
@ -563,7 +521,7 @@ class delay():
#Find the minimum period for all ports. Start at one port and perform binary search then use that delay as a starting position.
#For testing purposes, only checks read ports.
for port in self.read_ports:
for port in self.read_index:
target_period = self.find_min_period_one_port(feasible_delays, port, lb_period, ub_period, target_period)
#The min period of one port becomes the new lower bound. Reset the upper_bound.
lb_period = target_period
@ -728,8 +686,8 @@ class delay():
"""Simulate all specified output loads and input slews pairs of all ports"""
measure_data = self.get_empty_measure_data_dict()
#Set the target simulation ports to all available ports. This make sims slower but failed sims exit anyways.
self.targ_read_ports = self.read_ports
self.targ_write_ports = self.write_ports
self.targ_read_ports = self.read_index
self.targ_write_ports = self.write_index
for slew in slews:
for load in loads:
self.set_load_slew(load,slew)
@ -738,7 +696,7 @@ class delay():
debug.check(success,"Couldn't run a simulation. slew={0} load={1}\n".format(self.slew,self.load))
debug.info(1, "Simulation Passed: Port {0} slew={1} load={2}".format("All", self.slew,self.load))
#The results has a dict for every port but dicts can be empty (e.g. ports were not targeted).
for port in range(self.total_port_num):
for port in range(self.total_ports):
for mname,value in delay_results[port].items():
if "power" in mname:
# Subtract partial array leakage and add full array leakage for the power measures
@ -746,119 +704,8 @@ class delay():
else:
measure_data[port][mname].append(value)
return measure_data
def add_data(self, data, port):
""" Add the array of data values """
debug.check(len(data)==self.word_size, "Invalid data word size.")
debug.check(port < len(self.data_values), "Port number cannot index data values.")
index = 0
for c in data:
if c=="0":
self.data_values[port][index].append(0)
elif c=="1":
self.data_values[port][index].append(1)
else:
debug.error("Non-binary data string",1)
index += 1
def add_address(self, address, port):
""" Add the array of address values """
debug.check(len(address)==self.addr_size, "Invalid address size.")
index = 0
for c in address:
if c=="0":
self.addr_values[port][index].append(0)
elif c=="1":
self.addr_values[port][index].append(1)
else:
debug.error("Non-binary address string",1)
index += 1
def add_noop_one_port(self, address, data, port):
""" Add the control values for a noop to a single port. """
#This is to be used as a helper function for the other add functions. Cycle and comments are omitted.
self.add_control_one_port(port, "noop")
if port in self.write_ports:
self.add_data(data,port)
self.add_address(address, port)
def add_noop_all_ports(self, comment, address, data):
""" Add the control values for a noop to all ports. """
self.add_comment("All", comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period
for port in range(self.total_port_num):
self.add_noop_one_port(address, data, port)
def add_read(self, comment, address, data, port):
""" Add the control values for a read cycle. """
debug.check(port in self.read_ports, "Cannot add read cycle to a write port.")
self.add_comment(port, comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.add_control_one_port(port, "read")
#If the port is also a readwrite then add data.
if port in self.write_ports:
self.add_data(data,port)
self.add_address(address, port)
#This value is hard coded here. Possibly change to member variable or set in add_noop_one_port
noop_data = "0"*self.word_size
#Add noops to all other ports.
for unselected_port in range(self.total_port_num):
if unselected_port != port:
self.add_noop_one_port(address, noop_data, unselected_port)
def add_write(self, comment, address, data, port):
""" Add the control values for a write cycle. """
debug.check(port in self.write_ports, "Cannot add read cycle to a read port.")
self.add_comment(port, comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.add_control_one_port(port, "write")
self.add_data(data,port)
self.add_address(address,port)
#This value is hard coded here. Possibly change to member variable or set in add_noop_one_port
noop_data = "0"*self.word_size
#Add noops to all other ports.
for unselected_port in range(self.total_port_num):
if unselected_port != port:
self.add_noop_one_port(address, noop_data, unselected_port)
def add_control_one_port(self, port, op):
"""Appends control signals for operation to a given port"""
#Determine values to write to port
web_val = 1
csb_val = 1
if op == "read":
csb_val = 0
elif op == "write":
csb_val = 0
web_val = 0
elif op != "noop":
debug.error("Could not add control signals for port {0}. Command {1} not recognized".format(port,op),1)
#Append the values depending on the type of port
self.csb_values[port].append(csb_val)
#If port is in both lists, add rw control signal. Condition indicates its a RW port.
if port in self.write_ports and port in self.read_ports:
self.web_values[port].append(web_val)
def add_comment(self, port, comment):
"""Add comment to list to be printed in stimulus file"""
#Clean up time before appending. Make spacing dynamic as well.
time = "{0:.2f} ns:".format(self.t_current)
time_spacing = len(time)+6
self.cycle_comments.append("Cycle {0:<6d} Port {1:<6} {2:<{3}}: {4}".format(len(self.cycle_times),
port,
time,
time_spacing,
comment))
def gen_test_cycles_one_port(self, read_port, write_port):
"""Intended but not implemented: Returns a list of key time-points [ns] of the waveform (each rising edge)
of the cycles to do a timing evaluation of a single port. Current: Values overwritten for multiple calls"""
@ -925,11 +772,15 @@ class delay():
def get_available_port(self,get_read_port):
"""Returns the first accessible read or write port. """
if get_read_port and len(self.read_ports) > 0:
return self.read_ports[0]
elif not get_read_port and len(self.write_ports) > 0:
return self.write_ports[0]
if get_read_port and len(self.read_index) > 0:
return self.read_index[0]
elif not get_read_port and len(self.write_index) > 0:
return self.write_index[0]
return None
def set_stimulus_variables(self):
simulation.set_stimulus_variables(self)
self.measure_cycles = {}
def create_test_cycles(self):
"""Returns a list of key time-points [ns] of the waveform (each rising edge)
@ -937,31 +788,13 @@ class delay():
and does not need a rising edge."""
#Using this requires setting at least one port to target for simulation.
if len(self.targ_write_ports) == 0 and len(self.targ_read_ports) == 0:
debug.error("No ports selected for characterization.",1)
# Start at time 0
self.t_current = 0
# Cycle times (positive edge) with comment
self.cycle_comments = []
self.cycle_times = []
self.measure_cycles = {}
# Control signals for ports. These are not the final signals and will likely be changed later.
#web is the enable for write ports. Dicts used for simplicity as ports are not necessarily incremental.
self.web_values = {port:[] for port in self.write_ports}
#csb acts as an enable for the read ports.
self.csb_values = {port:[] for port in range(self.total_port_num)}
# Address and data values for each address/data bit. A 3d list of size #ports x bits x cycles.
self.data_values=[[[] for bit in range(self.word_size)] for port in range(len(self.write_ports))]
self.addr_values=[[[] for bit in range(self.addr_size)] for port in range(self.total_port_num)]
debug.error("No port selected for characterization.",1)
self.set_stimulus_variables()
#Get any available read/write port in case only a single write or read ports is being characterized.
cur_read_port = self.get_available_port(get_read_port=True)
cur_write_port = self.get_available_port(get_read_port=False)
#These checks should be superceded by check_arguments which should have been called earlier, so this is a double check.
debug.check(cur_read_port != None, "Characterizer requires at least 1 read port")
debug.check(cur_write_port != None, "Characterizer requires at least 1 write port")
@ -1026,7 +859,7 @@ class delay():
def gen_data(self):
""" Generates the PWL data inputs for a simulation timing test. """
for write_port in self.write_ports:
for write_port in self.write_index:
for i in range(self.word_size):
sig_name="{0}{1}_{2} ".format(self.din_name,write_port, i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[write_port][i], self.period, self.slew, 0.05)
@ -1036,16 +869,16 @@ class delay():
Generates the address inputs for a simulation timing test.
This alternates between all 1's and all 0's for the address.
"""
for port in range(self.total_port_num):
for port in range(self.total_ports):
for i in range(self.addr_size):
sig_name = "{0}{1}_{2}".format(self.addr_name,port,i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[port][i], self.period, self.slew, 0.05)
def gen_control(self):
""" Generates the control signals """
for port in range(self.total_port_num):
for port in range(self.total_ports):
self.stim.gen_pwl("CSB{0}".format(port), self.cycle_times, self.csb_values[port], self.period, self.slew, 0.05)
if port in self.read_ports and port in self.write_ports:
if port in self.read_index and port in self.write_index:
self.stim.gen_pwl("WEB{0}".format(port), self.cycle_times, self.web_values[port], self.period, self.slew, 0.05)
@ -1053,5 +886,5 @@ class delay():
"""Make a dict of lists for each type of delay and power measurement to append results to"""
measure_names = self.delay_meas_names + self.power_meas_names
#Create list of dicts. List lengths is # of ports. Each dict maps the measurement names to lists.
measure_data = [{mname:[] for mname in measure_names} for i in range(self.total_port_num)]
measure_data = [{mname:[] for mname in measure_names} for i in range(self.total_ports)]
return measure_data

View File

@ -81,7 +81,6 @@ class simulation():
def add_data(self, data, port):
""" Add the array of data values """
debug.check(len(data)==self.word_size, "Invalid data word size.")
#debug.check(port < len(self.data_values), "Port number cannot index data values.")
bit = self.word_size - 1
for c in data:
@ -109,12 +108,9 @@ class simulation():
def add_write(self, comment, address, data, port):
""" Add the control values for a write cycle. """
debug.info(1, comment)
debug.info(2, comment)
debug.check(port in self.write_index, "Cannot add write cycle to a read port. Port {0}, Write Ports {1}".format(port, self.write_index))
self.cycle_comments.append("Cycle {0:2d}\tPort {3}\t{1:5.2f}ns:\t{2}".format(len(self.cycle_comments),
self.t_current,
comment,
port))
self.append_cycle_comment(port, comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period
@ -131,12 +127,9 @@ class simulation():
def add_read(self, comment, address, data, port):
""" Add the control values for a read cycle. """
debug.info(1, comment)
debug.info(2, comment)
debug.check(port in self.read_index, "Cannot add read cycle to a write port. Port {0}, Read Ports {1}".format(port, self.read_index))
self.cycle_comments.append("Cycle {0:2d}\tPort {3}\t{1:5.2f}ns:\t{2}".format(len(self.cycle_comments),
self.t_current,
comment,
port))
self.append_cycle_comment(port, comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.add_control_one_port(port, "read")
@ -152,13 +145,22 @@ class simulation():
for unselected_port in range(self.total_ports):
if unselected_port != port:
self.add_noop_one_port(address, noop_data, unselected_port)
def append_cycle_comment(self, port, comment):
"""Add comment to list to be printed in stimulus file"""
#Clean up time before appending. Make spacing dynamic as well.
time = "{0:.2f} ns:".format(self.t_current)
time_spacing = len(time)+6
self.cycle_comments.append("Cycle {0:<6d} Port {1:<6} {2:<{3}}: {4}".format(len(self.cycle_times),
port,
time,
time_spacing,
comment))
def add_noop_all_ports(self, comment, address, data):
""" Add the control values for a noop to all ports. """
debug.info(1, comment)
self.cycle_comments.append("Cycle {0:2d}\tPort All\t{1:5.2f}ns:\t{2}".format(len(self.cycle_times),
self.t_current,
comment))
debug.info(2, comment)
self.append_cycle_comment("All", comment)
self.cycle_times.append(self.t_current)
self.t_current += self.period

View File

@ -43,8 +43,8 @@ class worst_case(delay):
test_bits = self.get_test_bits()
bit_delays = self.simulate_for_bit_delays(test_bits)
for delay in bit_delays:
debug.info(1, "{}".format(delay))
for i in range(len(test_bits)):
debug.info(1, "Bit tested: addr {0[0]} data_pos {0[1]}\n Values {1}".format(test_bits[i], bit_delays[i]))
def simulate_for_bit_delays(self, test_bits):
"""Simulates the delay of the sram of over several bits."""

View File

@ -11,9 +11,9 @@ output_path = "temp"
output_name = "sram_{0}_{1}_{2}_{3}".format(word_size,num_words,num_banks,tech_name)
#Setting for multiport
# netlist_only = True
# bitcell = "pbitcell"
# replica_bitcell="replica_pbitcell"
# num_rw_ports = 1
# num_r_ports = 1
# num_w_ports = 0
netlist_only = True
bitcell = "pbitcell"
replica_bitcell="replica_pbitcell"
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0

View File

@ -31,14 +31,14 @@ class worst_case_timing_sram_test(openram_test):
if not OPTS.spice_exe:
debug.error("Could not find {} simulator.".format(OPTS.spice_name),-1)
word_size, num_words, num_banks = 32, 32, 1
word_size, num_words, num_banks = 2, 16, 1
from sram import sram
from sram_config import sram_config
c = sram_config(word_size=word_size,
num_words=num_words,
num_banks=num_banks)
#c.words_per_row=1
c.compute_sizes()
c.words_per_row=1
#c.compute_sizes()
debug.info(1, "Testing the timing different bitecells inside a {}bit, {} words SRAM with {} bank".format(
word_size, num_words, num_banks))
s = sram(c, name="sram1")
@ -56,8 +56,10 @@ class worst_case_timing_sram_test(openram_test):
sp_pex_file = OPTS.output_path + s.name + "_pex.sp"
verify.run_pex(s.name, gdsname, sp_netlist_file, output=sp_pex_file)
sp_sim_file = sp_pex_file
debug.info(1, "Performing spice simulations with backannotated spice file.")
else:
sp_sim_file = sp_netlist_file
debug.info(1, "Performing spice simulations with spice netlist.")
corner = (OPTS.process_corners[0], OPTS.supply_voltages[0], OPTS.temperatures[0])
wc = worst_case(s.s, sp_sim_file, corner)