OpenRAM/compiler/bitcells/dummy_bitcell.py

49 lines
1.8 KiB
Python
Raw Normal View History

2019-06-15 00:06:04 +02:00
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import design
import debug
import utils
from tech import GDS,layer,parameter,drc
import logical_effort
class dummy_bitcell(design.design):
"""
A single bit cell (6T, 8T, etc.) This module implements the
single memory cell used in the design. It is a hand-made cell, so
the layout and netlist should be available in the technology
library.
"""
pin_names = ["bl", "br", "wl", "vdd", "gnd"]
(width,height) = utils.get_libcell_size("dummy_cell_6t", GDS["unit"], layer["boundary"])
pin_map = utils.get_libcell_pins(pin_names, "dummy_cell_6t", GDS["unit"])
def __init__(self, name=""):
# Ignore the name argument
design.design.__init__(self, "dummy_cell_6t")
debug.info(2, "Create dummy bitcell")
self.width = dummy_bitcell.width
self.height = dummy_bitcell.height
self.pin_map = dummy_bitcell.pin_map
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""
from tech import spice
leakage = spice["bitcell_leakage"]
dynamic = 0 #temporary
total_power = self.return_power(dynamic, leakage)
return total_power
def get_wl_cin(self):
"""Return the relative capacitance of the access transistor gates"""
#This is a handmade cell so the value must be entered in the tech.py file or estimated.
#Calculated in the tech file by summing the widths of all the related gates and dividing by the minimum width.
access_tx_cin = parameter["6T_access_size"]/drc["minwidth_tx"]
return 2*access_tx_cin