OpenRAM/compiler/characterizer/regression_model.py

142 lines
5.7 KiB
Python
Raw Normal View History

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
from .analytical_util import *
from .simulation import simulation
from globals import OPTS
import debug
import math
relative_data_path = "/sim_data"
data_fnames = ["rise_delay.csv",
"fall_delay.csv",
"rise_slew.csv",
"fall_slew.csv",
"write1_power.csv",
"write0_power.csv",
"read1_power.csv",
"read0_power.csv",
"leakage_data.csv"]
# Positions must correspond to data_fname list
lib_dnames = ["delay_lh",
"delay_hl",
"slew_lh",
"slew_hl",
"write1_power",
"write0_power",
"read1_power",
"read0_power",
"leakage_power"]
# Check if another data dir was specified
if OPTS.sim_data_path == None:
data_dir = OPTS.openram_tech+relative_data_path
else:
data_dir = OPTS.sim_data_path
data_paths = {dname:data_dir +'/'+fname for dname, fname in zip(lib_dnames, data_fnames)}
class regression_model(simulation):
def __init__(self, sram, spfile, corner):
super().__init__(sram, spfile, corner)
self.set_corner(corner)
def get_lib_values(self, slews, loads):
"""
A model and prediction is created for each output needed for the LIB
"""
debug.info(1, "Characterizing SRAM using linear regression models.")
log_num_words = math.log(OPTS.num_words, 2)
model_inputs = [log_num_words,
OPTS.word_size,
OPTS.words_per_row,
OPTS.local_array_size,
process_transform[self.process],
self.vdd_voltage,
self.temperature]
# Area removed for now
# self.sram.width * self.sram.height,
self.create_measurement_names()
models = self.train_models()
# Set delay/power for slews and loads
port_data = self.get_empty_measure_data_dict()
debug.info(1, 'Slew, Load, Port, Delay(ns), Slew(ns)')
max_delay = 0.0
for slew in slews:
for load in loads:
# List returned with value order being delay, power, leakage, slew
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
# Delay is only calculated on a single port and replicated for now.
for port in self.all_ports:
port_data[port]['delay_lh'].append(sram_vals['delay_lh'])
port_data[port]['delay_hl'].append(sram_vals['delay_hl'])
port_data[port]['slew_lh'].append(sram_vals['slew_lh'])
port_data[port]['slew_hl'].append(sram_vals['slew_hl'])
port_data[port]['write1_power'].append(sram_vals['write1_power'])
port_data[port]['write0_power'].append(sram_vals['write0_power'])
port_data[port]['read1_power'].append(sram_vals['read1_power'])
port_data[port]['read0_power'].append(sram_vals['read0_power'])
# Disabled power not modeled. Copied from other power predictions
port_data[port]['disabled_write1_power'].append(sram_vals['write1_power'])
port_data[port]['disabled_write0_power'].append(sram_vals['write0_power'])
port_data[port]['disabled_read1_power'].append(sram_vals['read1_power'])
port_data[port]['disabled_read0_power'].append(sram_vals['read0_power'])
debug.info(1, '{}, {}, {}, {}, {}'.format(slew,
load,
port,
sram_vals['delay_lh'],
sram_vals['slew_lh']))
# Estimate the period as double the delay with margin
period_margin = 0.1
sram_data = {"min_period": sram_vals['delay_lh'] * 2,
"leakage_power": sram_vals["leakage_power"]}
debug.info(2, "SRAM Data:\n{}".format(sram_data))
debug.info(2, "Port Data:\n{}".format(port_data))
return (sram_data, port_data)
def get_predictions(self, model_inputs, models):
"""
Generate a model and prediction for LIB output
"""
#Scaled the inputs using first data file as a reference
data_name = lib_dnames[0]
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[data_name])])
predictions = {}
for dname in data_paths.keys():
path = data_paths[dname]
m = models[dname]
features, labels = get_scaled_data(path)
scaled_pred = self.model_prediction(m, scaled_inputs)
pred = unscale_data(scaled_pred.tolist(), path)
debug.info(2,"Unscaled Prediction = {}".format(pred))
predictions[dname] = pred[0][0]
return predictions
def train_models(self):
"""
Generate and return models
"""
models = {}
for dname, dpath in data_paths.items():
features, labels = get_scaled_data(dpath)
model = self.generate_model(features, labels)
models[dname] = model
return models