mirror of https://github.com/VLSIDA/OpenRAM.git
Added shared classes between regression models, added and changed some debug messages
This commit is contained in:
parent
6d2a35e929
commit
70fe90f0af
|
|
@ -19,6 +19,7 @@ from .simulation import *
|
|||
from .measurements import *
|
||||
from .model_check import *
|
||||
from .analytical_util import *
|
||||
from .regression_model import *
|
||||
|
||||
debug.info(1,"Initializing characterizer...")
|
||||
OPTS.spice_exe = ""
|
||||
|
|
|
|||
|
|
@ -254,9 +254,9 @@ def scale_input_datapoint(point, file_path):
|
|||
training.
|
||||
"""
|
||||
maxs, mins, avgs = get_max_min_from_file(file_path)
|
||||
debug.info(1, "maxs={}".format(maxs))
|
||||
debug.info(1, "mins={}".format(mins))
|
||||
debug.info(1, "point={}".format(point))
|
||||
debug.info(3, "maxs={}".format(maxs))
|
||||
debug.info(3, "mins={}".format(mins))
|
||||
debug.info(3, "point={}".format(point))
|
||||
|
||||
scaled_point = []
|
||||
for feature, mx, mn in zip(point, maxs, mins):
|
||||
|
|
|
|||
|
|
@ -6,131 +6,17 @@
|
|||
# All rights reserved.
|
||||
#
|
||||
|
||||
from .analytical_util import *
|
||||
from .simulation import simulation
|
||||
from .regression_model import regression_model
|
||||
from globals import OPTS
|
||||
import debug
|
||||
|
||||
import os
|
||||
from sklearn.linear_model import LinearRegression
|
||||
import math
|
||||
|
||||
relative_data_path = "/sim_data"
|
||||
data_fnames = ["rise_delay.csv",
|
||||
"fall_delay.csv",
|
||||
"rise_slew.csv",
|
||||
"fall_slew.csv",
|
||||
"write1_power.csv",
|
||||
"write0_power.csv",
|
||||
"read1_power.csv",
|
||||
"read0_power.csv",
|
||||
"leakage_data.csv"]
|
||||
# Positions must correspond to data_fname list
|
||||
lib_dnames = ["delay_lh",
|
||||
"delay_hl",
|
||||
"slew_lh",
|
||||
"slew_hl",
|
||||
"write1_power",
|
||||
"write0_power",
|
||||
"read1_power",
|
||||
"read0_power",
|
||||
"leakage_power"]
|
||||
data_dir = OPTS.openram_tech+relative_data_path
|
||||
data_paths = {dname:data_dir +'/'+fname for dname, fname in zip(lib_dnames, data_fnames)}
|
||||
|
||||
class linear_regression(simulation):
|
||||
class linear_regression(regression_model):
|
||||
|
||||
def __init__(self, sram, spfile, corner):
|
||||
super().__init__(sram, spfile, corner)
|
||||
self.set_corner(corner)
|
||||
|
||||
def get_lib_values(self, slews, loads):
|
||||
"""
|
||||
A model and prediction is created for each output needed for the LIB
|
||||
"""
|
||||
|
||||
log_num_words = math.log(OPTS.num_words, 2)
|
||||
debug.info(1, "OPTS.words_per_row={}".format(OPTS.words_per_row))
|
||||
model_inputs = [log_num_words,
|
||||
OPTS.word_size,
|
||||
OPTS.words_per_row,
|
||||
self.sram.width * self.sram.height,
|
||||
process_transform[self.process],
|
||||
self.vdd_voltage,
|
||||
self.temperature]
|
||||
|
||||
self.create_measurement_names()
|
||||
models = self.train_models()
|
||||
|
||||
# Set delay/power for slews and loads
|
||||
port_data = self.get_empty_measure_data_dict()
|
||||
debug.info(1, 'Slew, Load, Delay(ns), Slew(ns)')
|
||||
max_delay = 0.0
|
||||
for slew in slews:
|
||||
for load in loads:
|
||||
# List returned with value order being delay, power, leakage, slew
|
||||
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
|
||||
# Delay is only calculated on a single port and replicated for now.
|
||||
for port in self.all_ports:
|
||||
port_data[port]['delay_lh'].append(sram_vals['delay_lh'])
|
||||
port_data[port]['delay_hl'].append(sram_vals['delay_hl'])
|
||||
port_data[port]['slew_lh'].append(sram_vals['slew_lh'])
|
||||
port_data[port]['slew_hl'].append(sram_vals['slew_hl'])
|
||||
|
||||
port_data[port]['write1_power'].append(sram_vals['write1_power'])
|
||||
port_data[port]['write0_power'].append(sram_vals['write0_power'])
|
||||
port_data[port]['read1_power'].append(sram_vals['read1_power'])
|
||||
port_data[port]['read0_power'].append(sram_vals['read0_power'])
|
||||
|
||||
# Disabled power not modeled. Copied from other power predictions
|
||||
port_data[port]['disabled_write1_power'].append(sram_vals['write1_power'])
|
||||
port_data[port]['disabled_write0_power'].append(sram_vals['write0_power'])
|
||||
port_data[port]['disabled_read1_power'].append(sram_vals['read1_power'])
|
||||
port_data[port]['disabled_read0_power'].append(sram_vals['read0_power'])
|
||||
|
||||
|
||||
# Estimate the period as double the delay with margin
|
||||
period_margin = 0.1
|
||||
sram_data = {"min_period": sram_vals['delay_lh'] * 2,
|
||||
"leakage_power": sram_vals["leakage_power"]}
|
||||
|
||||
debug.info(2, "SRAM Data:\n{}".format(sram_data))
|
||||
debug.info(2, "Port Data:\n{}".format(port_data))
|
||||
|
||||
return (sram_data, port_data)
|
||||
|
||||
def get_predictions(self, model_inputs, models):
|
||||
"""
|
||||
Generate a model and prediction for LIB output
|
||||
"""
|
||||
|
||||
#Scaled the inputs using first data file as a reference
|
||||
data_name = lib_dnames[0]
|
||||
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[data_name])])
|
||||
|
||||
predictions = {}
|
||||
for dname in data_paths.keys():
|
||||
path = data_paths[dname]
|
||||
m = models[dname]
|
||||
|
||||
features, labels = get_scaled_data(path)
|
||||
scaled_pred = self.model_prediction(m, scaled_inputs)
|
||||
pred = unscale_data(scaled_pred.tolist(), path)
|
||||
debug.info(1,"Unscaled Prediction = {}".format(pred))
|
||||
predictions[dname] = pred[0][0]
|
||||
return predictions
|
||||
|
||||
def train_models(self):
|
||||
"""
|
||||
Generate and return models
|
||||
"""
|
||||
models = {}
|
||||
for dname, dpath in data_paths.items():
|
||||
features, labels = get_scaled_data(dpath)
|
||||
model = self.generate_model(features, labels)
|
||||
models[dname] = model
|
||||
return models
|
||||
|
||||
|
||||
def generate_model(self, features, labels):
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -6,121 +6,19 @@
|
|||
# All rights reserved.
|
||||
#
|
||||
|
||||
from .analytical_util import *
|
||||
from .simulation import simulation
|
||||
from .regression_model import regression_model
|
||||
from globals import OPTS
|
||||
import debug
|
||||
|
||||
import os
|
||||
import math
|
||||
import numpy as np
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
import tensorflow as tf
|
||||
|
||||
relative_data_path = "/sim_data"
|
||||
data_fnames = ["rise_delay.csv",
|
||||
"fall_delay.csv",
|
||||
"rise_slew.csv",
|
||||
"fall_slew.csv",
|
||||
"write1_power.csv",
|
||||
"write0_power.csv",
|
||||
"read1_power.csv",
|
||||
"read0_power.csv",
|
||||
"leakage_data.csv"]
|
||||
|
||||
data_dir = OPTS.openram_tech+relative_data_path
|
||||
data_paths = [data_dir +'/'+fname for fname in data_fnames]
|
||||
|
||||
class neural_network(simulation):
|
||||
class neural_network(regression_model):
|
||||
|
||||
def __init__(self, sram, spfile, corner):
|
||||
super().__init__(sram, spfile, corner)
|
||||
self.set_corner(corner)
|
||||
|
||||
def get_lib_values(self, slews, loads):
|
||||
"""
|
||||
A model and prediction is created for each output needed for the LIB
|
||||
"""
|
||||
|
||||
log_num_words = math.log(OPTS.num_words, 2)
|
||||
debug.info(1, "OPTS.words_per_row={}".format(OPTS.words_per_row))
|
||||
model_inputs = [log_num_words,
|
||||
OPTS.word_size,
|
||||
OPTS.words_per_row,
|
||||
self.sram.width * self.sram.height,
|
||||
process_transform[self.process],
|
||||
self.vdd_voltage,
|
||||
self.temperature]
|
||||
|
||||
self.create_measurement_names()
|
||||
models = self.train_models()
|
||||
|
||||
# Set delay/power for slews and loads
|
||||
port_data = self.get_empty_measure_data_dict()
|
||||
debug.info(1, 'Slew, Load, Delay(ns), Slew(ns)')
|
||||
max_delay = 0.0
|
||||
for slew in slews:
|
||||
for load in loads:
|
||||
# List returned with value order being delay, power, leakage, slew
|
||||
# FIXME: make order less hard coded
|
||||
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
|
||||
# Delay is only calculated on a single port and replicated for now.
|
||||
for port in self.all_ports:
|
||||
port_data[port]['delay_lh'].append(sram_vals[0][0][0])
|
||||
port_data[port]['delay_hl'].append(sram_vals[1][0][0])
|
||||
port_data[port]['slew_lh'].append(sram_vals[2][0][0])
|
||||
port_data[port]['slew_hl'].append(sram_vals[3][0][0])
|
||||
|
||||
port_data[port]['write1_power'].append(sram_vals[4][0][0])
|
||||
port_data[port]['write0_power'].append(sram_vals[5][0][0])
|
||||
port_data[port]['read1_power'].append(sram_vals[6][0][0])
|
||||
port_data[port]['read0_power'].append(sram_vals[7][0][0])
|
||||
|
||||
# Disabled power not modeled. Copied from other power predictions
|
||||
port_data[port]['disabled_write1_power'].append(sram_vals[4][0][0])
|
||||
port_data[port]['disabled_write0_power'].append(sram_vals[5][0][0])
|
||||
port_data[port]['disabled_read1_power'].append(sram_vals[6][0][0])
|
||||
port_data[port]['disabled_read0_power'].append(sram_vals[7][0][0])
|
||||
|
||||
|
||||
# Estimate the period as double the delay with margin
|
||||
period_margin = 0.1
|
||||
sram_data = {"min_period": sram_vals[0][0][0] * 2,
|
||||
"leakage_power": sram_vals[8][0][0]}
|
||||
|
||||
debug.info(2, "SRAM Data:\n{}".format(sram_data))
|
||||
debug.info(2, "Port Data:\n{}".format(port_data))
|
||||
|
||||
return (sram_data, port_data)
|
||||
|
||||
def get_predictions(self, model_inputs, models):
|
||||
"""
|
||||
Generate a model and prediction for LIB output
|
||||
"""
|
||||
|
||||
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[0])])
|
||||
|
||||
predictions = []
|
||||
for m, path in zip(models, data_paths):
|
||||
features, labels = get_scaled_data(path)
|
||||
scaled_pred = self.model_prediction(m, scaled_inputs)
|
||||
pred = unscale_data(scaled_pred.tolist(), path)
|
||||
debug.info(1,"Unscaled Prediction = {}".format(pred))
|
||||
predictions.append(pred)
|
||||
return predictions
|
||||
|
||||
def train_models(self):
|
||||
"""
|
||||
Generate and return models
|
||||
"""
|
||||
models = []
|
||||
for path in data_paths:
|
||||
features, labels = get_scaled_data(path)
|
||||
model = self.generate_model(features, labels)
|
||||
models.append(model)
|
||||
return models
|
||||
|
||||
|
||||
def generate_model(self, features, labels):
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -0,0 +1,135 @@
|
|||
# See LICENSE for licensing information.
|
||||
#
|
||||
# Copyright (c) 2016-2019 Regents of the University of California and The Board
|
||||
# of Regents for the Oklahoma Agricultural and Mechanical College
|
||||
# (acting for and on behalf of Oklahoma State University)
|
||||
# All rights reserved.
|
||||
#
|
||||
|
||||
from .analytical_util import *
|
||||
from .simulation import simulation
|
||||
from globals import OPTS
|
||||
import debug
|
||||
|
||||
import math
|
||||
|
||||
relative_data_path = "/sim_data"
|
||||
data_fnames = ["rise_delay.csv",
|
||||
"fall_delay.csv",
|
||||
"rise_slew.csv",
|
||||
"fall_slew.csv",
|
||||
"write1_power.csv",
|
||||
"write0_power.csv",
|
||||
"read1_power.csv",
|
||||
"read0_power.csv",
|
||||
"leakage_data.csv"]
|
||||
# Positions must correspond to data_fname list
|
||||
lib_dnames = ["delay_lh",
|
||||
"delay_hl",
|
||||
"slew_lh",
|
||||
"slew_hl",
|
||||
"write1_power",
|
||||
"write0_power",
|
||||
"read1_power",
|
||||
"read0_power",
|
||||
"leakage_power"]
|
||||
data_dir = OPTS.openram_tech+relative_data_path
|
||||
data_paths = {dname:data_dir +'/'+fname for dname, fname in zip(lib_dnames, data_fnames)}
|
||||
|
||||
class regression_model(simulation):
|
||||
|
||||
def __init__(self, sram, spfile, corner):
|
||||
super().__init__(sram, spfile, corner)
|
||||
self.set_corner(corner)
|
||||
|
||||
def get_lib_values(self, slews, loads):
|
||||
"""
|
||||
A model and prediction is created for each output needed for the LIB
|
||||
"""
|
||||
|
||||
debug.info(1, "Characterizing SRAM using linear regression models.")
|
||||
log_num_words = math.log(OPTS.num_words, 2)
|
||||
model_inputs = [log_num_words,
|
||||
OPTS.word_size,
|
||||
OPTS.words_per_row,
|
||||
self.sram.width * self.sram.height,
|
||||
process_transform[self.process],
|
||||
self.vdd_voltage,
|
||||
self.temperature]
|
||||
|
||||
self.create_measurement_names()
|
||||
models = self.train_models()
|
||||
|
||||
# Set delay/power for slews and loads
|
||||
port_data = self.get_empty_measure_data_dict()
|
||||
debug.info(1, 'Slew, Load, Port, Delay(ns), Slew(ns)')
|
||||
max_delay = 0.0
|
||||
for slew in slews:
|
||||
for load in loads:
|
||||
# List returned with value order being delay, power, leakage, slew
|
||||
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
|
||||
# Delay is only calculated on a single port and replicated for now.
|
||||
for port in self.all_ports:
|
||||
port_data[port]['delay_lh'].append(sram_vals['delay_lh'])
|
||||
port_data[port]['delay_hl'].append(sram_vals['delay_hl'])
|
||||
port_data[port]['slew_lh'].append(sram_vals['slew_lh'])
|
||||
port_data[port]['slew_hl'].append(sram_vals['slew_hl'])
|
||||
|
||||
port_data[port]['write1_power'].append(sram_vals['write1_power'])
|
||||
port_data[port]['write0_power'].append(sram_vals['write0_power'])
|
||||
port_data[port]['read1_power'].append(sram_vals['read1_power'])
|
||||
port_data[port]['read0_power'].append(sram_vals['read0_power'])
|
||||
|
||||
# Disabled power not modeled. Copied from other power predictions
|
||||
port_data[port]['disabled_write1_power'].append(sram_vals['write1_power'])
|
||||
port_data[port]['disabled_write0_power'].append(sram_vals['write0_power'])
|
||||
port_data[port]['disabled_read1_power'].append(sram_vals['read1_power'])
|
||||
port_data[port]['disabled_read0_power'].append(sram_vals['read0_power'])
|
||||
|
||||
debug.info(1, '{}, {}, {}, {}, {}'.format(slew,
|
||||
load,
|
||||
port,
|
||||
sram_vals['delay_lh'],
|
||||
sram_vals['slew_lh']))
|
||||
# Estimate the period as double the delay with margin
|
||||
period_margin = 0.1
|
||||
sram_data = {"min_period": sram_vals['delay_lh'] * 2,
|
||||
"leakage_power": sram_vals["leakage_power"]}
|
||||
|
||||
debug.info(2, "SRAM Data:\n{}".format(sram_data))
|
||||
debug.info(2, "Port Data:\n{}".format(port_data))
|
||||
|
||||
return (sram_data, port_data)
|
||||
|
||||
def get_predictions(self, model_inputs, models):
|
||||
"""
|
||||
Generate a model and prediction for LIB output
|
||||
"""
|
||||
|
||||
#Scaled the inputs using first data file as a reference
|
||||
data_name = lib_dnames[0]
|
||||
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[data_name])])
|
||||
|
||||
predictions = {}
|
||||
for dname in data_paths.keys():
|
||||
path = data_paths[dname]
|
||||
m = models[dname]
|
||||
|
||||
features, labels = get_scaled_data(path)
|
||||
scaled_pred = self.model_prediction(m, scaled_inputs)
|
||||
pred = unscale_data(scaled_pred.tolist(), path)
|
||||
debug.info(2,"Unscaled Prediction = {}".format(pred))
|
||||
predictions[dname] = pred[0][0]
|
||||
return predictions
|
||||
|
||||
def train_models(self):
|
||||
"""
|
||||
Generate and return models
|
||||
"""
|
||||
models = {}
|
||||
for dname, dpath in data_paths.items():
|
||||
features, labels = get_scaled_data(dpath)
|
||||
model = self.generate_model(features, labels)
|
||||
models[dname] = model
|
||||
return models
|
||||
|
||||
Loading…
Reference in New Issue