Added shared classes between regression models, added and changed some debug messages

This commit is contained in:
Hunter Nichols 2021-01-19 14:19:50 -08:00
parent 6d2a35e929
commit 70fe90f0af
5 changed files with 143 additions and 223 deletions

View File

@ -19,6 +19,7 @@ from .simulation import *
from .measurements import *
from .model_check import *
from .analytical_util import *
from .regression_model import *
debug.info(1,"Initializing characterizer...")
OPTS.spice_exe = ""

View File

@ -254,9 +254,9 @@ def scale_input_datapoint(point, file_path):
training.
"""
maxs, mins, avgs = get_max_min_from_file(file_path)
debug.info(1, "maxs={}".format(maxs))
debug.info(1, "mins={}".format(mins))
debug.info(1, "point={}".format(point))
debug.info(3, "maxs={}".format(maxs))
debug.info(3, "mins={}".format(mins))
debug.info(3, "point={}".format(point))
scaled_point = []
for feature, mx, mn in zip(point, maxs, mins):

View File

@ -6,131 +6,17 @@
# All rights reserved.
#
from .analytical_util import *
from .simulation import simulation
from .regression_model import regression_model
from globals import OPTS
import debug
import os
from sklearn.linear_model import LinearRegression
import math
relative_data_path = "/sim_data"
data_fnames = ["rise_delay.csv",
"fall_delay.csv",
"rise_slew.csv",
"fall_slew.csv",
"write1_power.csv",
"write0_power.csv",
"read1_power.csv",
"read0_power.csv",
"leakage_data.csv"]
# Positions must correspond to data_fname list
lib_dnames = ["delay_lh",
"delay_hl",
"slew_lh",
"slew_hl",
"write1_power",
"write0_power",
"read1_power",
"read0_power",
"leakage_power"]
data_dir = OPTS.openram_tech+relative_data_path
data_paths = {dname:data_dir +'/'+fname for dname, fname in zip(lib_dnames, data_fnames)}
class linear_regression(simulation):
class linear_regression(regression_model):
def __init__(self, sram, spfile, corner):
super().__init__(sram, spfile, corner)
self.set_corner(corner)
def get_lib_values(self, slews, loads):
"""
A model and prediction is created for each output needed for the LIB
"""
log_num_words = math.log(OPTS.num_words, 2)
debug.info(1, "OPTS.words_per_row={}".format(OPTS.words_per_row))
model_inputs = [log_num_words,
OPTS.word_size,
OPTS.words_per_row,
self.sram.width * self.sram.height,
process_transform[self.process],
self.vdd_voltage,
self.temperature]
self.create_measurement_names()
models = self.train_models()
# Set delay/power for slews and loads
port_data = self.get_empty_measure_data_dict()
debug.info(1, 'Slew, Load, Delay(ns), Slew(ns)')
max_delay = 0.0
for slew in slews:
for load in loads:
# List returned with value order being delay, power, leakage, slew
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
# Delay is only calculated on a single port and replicated for now.
for port in self.all_ports:
port_data[port]['delay_lh'].append(sram_vals['delay_lh'])
port_data[port]['delay_hl'].append(sram_vals['delay_hl'])
port_data[port]['slew_lh'].append(sram_vals['slew_lh'])
port_data[port]['slew_hl'].append(sram_vals['slew_hl'])
port_data[port]['write1_power'].append(sram_vals['write1_power'])
port_data[port]['write0_power'].append(sram_vals['write0_power'])
port_data[port]['read1_power'].append(sram_vals['read1_power'])
port_data[port]['read0_power'].append(sram_vals['read0_power'])
# Disabled power not modeled. Copied from other power predictions
port_data[port]['disabled_write1_power'].append(sram_vals['write1_power'])
port_data[port]['disabled_write0_power'].append(sram_vals['write0_power'])
port_data[port]['disabled_read1_power'].append(sram_vals['read1_power'])
port_data[port]['disabled_read0_power'].append(sram_vals['read0_power'])
# Estimate the period as double the delay with margin
period_margin = 0.1
sram_data = {"min_period": sram_vals['delay_lh'] * 2,
"leakage_power": sram_vals["leakage_power"]}
debug.info(2, "SRAM Data:\n{}".format(sram_data))
debug.info(2, "Port Data:\n{}".format(port_data))
return (sram_data, port_data)
def get_predictions(self, model_inputs, models):
"""
Generate a model and prediction for LIB output
"""
#Scaled the inputs using first data file as a reference
data_name = lib_dnames[0]
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[data_name])])
predictions = {}
for dname in data_paths.keys():
path = data_paths[dname]
m = models[dname]
features, labels = get_scaled_data(path)
scaled_pred = self.model_prediction(m, scaled_inputs)
pred = unscale_data(scaled_pred.tolist(), path)
debug.info(1,"Unscaled Prediction = {}".format(pred))
predictions[dname] = pred[0][0]
return predictions
def train_models(self):
"""
Generate and return models
"""
models = {}
for dname, dpath in data_paths.items():
features, labels = get_scaled_data(dpath)
model = self.generate_model(features, labels)
models[dname] = model
return models
def generate_model(self, features, labels):
"""

View File

@ -6,121 +6,19 @@
# All rights reserved.
#
from .analytical_util import *
from .simulation import simulation
from .regression_model import regression_model
from globals import OPTS
import debug
import os
import math
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow as tf
relative_data_path = "/sim_data"
data_fnames = ["rise_delay.csv",
"fall_delay.csv",
"rise_slew.csv",
"fall_slew.csv",
"write1_power.csv",
"write0_power.csv",
"read1_power.csv",
"read0_power.csv",
"leakage_data.csv"]
data_dir = OPTS.openram_tech+relative_data_path
data_paths = [data_dir +'/'+fname for fname in data_fnames]
class neural_network(simulation):
class neural_network(regression_model):
def __init__(self, sram, spfile, corner):
super().__init__(sram, spfile, corner)
self.set_corner(corner)
def get_lib_values(self, slews, loads):
"""
A model and prediction is created for each output needed for the LIB
"""
log_num_words = math.log(OPTS.num_words, 2)
debug.info(1, "OPTS.words_per_row={}".format(OPTS.words_per_row))
model_inputs = [log_num_words,
OPTS.word_size,
OPTS.words_per_row,
self.sram.width * self.sram.height,
process_transform[self.process],
self.vdd_voltage,
self.temperature]
self.create_measurement_names()
models = self.train_models()
# Set delay/power for slews and loads
port_data = self.get_empty_measure_data_dict()
debug.info(1, 'Slew, Load, Delay(ns), Slew(ns)')
max_delay = 0.0
for slew in slews:
for load in loads:
# List returned with value order being delay, power, leakage, slew
# FIXME: make order less hard coded
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
# Delay is only calculated on a single port and replicated for now.
for port in self.all_ports:
port_data[port]['delay_lh'].append(sram_vals[0][0][0])
port_data[port]['delay_hl'].append(sram_vals[1][0][0])
port_data[port]['slew_lh'].append(sram_vals[2][0][0])
port_data[port]['slew_hl'].append(sram_vals[3][0][0])
port_data[port]['write1_power'].append(sram_vals[4][0][0])
port_data[port]['write0_power'].append(sram_vals[5][0][0])
port_data[port]['read1_power'].append(sram_vals[6][0][0])
port_data[port]['read0_power'].append(sram_vals[7][0][0])
# Disabled power not modeled. Copied from other power predictions
port_data[port]['disabled_write1_power'].append(sram_vals[4][0][0])
port_data[port]['disabled_write0_power'].append(sram_vals[5][0][0])
port_data[port]['disabled_read1_power'].append(sram_vals[6][0][0])
port_data[port]['disabled_read0_power'].append(sram_vals[7][0][0])
# Estimate the period as double the delay with margin
period_margin = 0.1
sram_data = {"min_period": sram_vals[0][0][0] * 2,
"leakage_power": sram_vals[8][0][0]}
debug.info(2, "SRAM Data:\n{}".format(sram_data))
debug.info(2, "Port Data:\n{}".format(port_data))
return (sram_data, port_data)
def get_predictions(self, model_inputs, models):
"""
Generate a model and prediction for LIB output
"""
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[0])])
predictions = []
for m, path in zip(models, data_paths):
features, labels = get_scaled_data(path)
scaled_pred = self.model_prediction(m, scaled_inputs)
pred = unscale_data(scaled_pred.tolist(), path)
debug.info(1,"Unscaled Prediction = {}".format(pred))
predictions.append(pred)
return predictions
def train_models(self):
"""
Generate and return models
"""
models = []
for path in data_paths:
features, labels = get_scaled_data(path)
model = self.generate_model(features, labels)
models.append(model)
return models
def generate_model(self, features, labels):
"""

View File

@ -0,0 +1,135 @@
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
from .analytical_util import *
from .simulation import simulation
from globals import OPTS
import debug
import math
relative_data_path = "/sim_data"
data_fnames = ["rise_delay.csv",
"fall_delay.csv",
"rise_slew.csv",
"fall_slew.csv",
"write1_power.csv",
"write0_power.csv",
"read1_power.csv",
"read0_power.csv",
"leakage_data.csv"]
# Positions must correspond to data_fname list
lib_dnames = ["delay_lh",
"delay_hl",
"slew_lh",
"slew_hl",
"write1_power",
"write0_power",
"read1_power",
"read0_power",
"leakage_power"]
data_dir = OPTS.openram_tech+relative_data_path
data_paths = {dname:data_dir +'/'+fname for dname, fname in zip(lib_dnames, data_fnames)}
class regression_model(simulation):
def __init__(self, sram, spfile, corner):
super().__init__(sram, spfile, corner)
self.set_corner(corner)
def get_lib_values(self, slews, loads):
"""
A model and prediction is created for each output needed for the LIB
"""
debug.info(1, "Characterizing SRAM using linear regression models.")
log_num_words = math.log(OPTS.num_words, 2)
model_inputs = [log_num_words,
OPTS.word_size,
OPTS.words_per_row,
self.sram.width * self.sram.height,
process_transform[self.process],
self.vdd_voltage,
self.temperature]
self.create_measurement_names()
models = self.train_models()
# Set delay/power for slews and loads
port_data = self.get_empty_measure_data_dict()
debug.info(1, 'Slew, Load, Port, Delay(ns), Slew(ns)')
max_delay = 0.0
for slew in slews:
for load in loads:
# List returned with value order being delay, power, leakage, slew
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
# Delay is only calculated on a single port and replicated for now.
for port in self.all_ports:
port_data[port]['delay_lh'].append(sram_vals['delay_lh'])
port_data[port]['delay_hl'].append(sram_vals['delay_hl'])
port_data[port]['slew_lh'].append(sram_vals['slew_lh'])
port_data[port]['slew_hl'].append(sram_vals['slew_hl'])
port_data[port]['write1_power'].append(sram_vals['write1_power'])
port_data[port]['write0_power'].append(sram_vals['write0_power'])
port_data[port]['read1_power'].append(sram_vals['read1_power'])
port_data[port]['read0_power'].append(sram_vals['read0_power'])
# Disabled power not modeled. Copied from other power predictions
port_data[port]['disabled_write1_power'].append(sram_vals['write1_power'])
port_data[port]['disabled_write0_power'].append(sram_vals['write0_power'])
port_data[port]['disabled_read1_power'].append(sram_vals['read1_power'])
port_data[port]['disabled_read0_power'].append(sram_vals['read0_power'])
debug.info(1, '{}, {}, {}, {}, {}'.format(slew,
load,
port,
sram_vals['delay_lh'],
sram_vals['slew_lh']))
# Estimate the period as double the delay with margin
period_margin = 0.1
sram_data = {"min_period": sram_vals['delay_lh'] * 2,
"leakage_power": sram_vals["leakage_power"]}
debug.info(2, "SRAM Data:\n{}".format(sram_data))
debug.info(2, "Port Data:\n{}".format(port_data))
return (sram_data, port_data)
def get_predictions(self, model_inputs, models):
"""
Generate a model and prediction for LIB output
"""
#Scaled the inputs using first data file as a reference
data_name = lib_dnames[0]
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[data_name])])
predictions = {}
for dname in data_paths.keys():
path = data_paths[dname]
m = models[dname]
features, labels = get_scaled_data(path)
scaled_pred = self.model_prediction(m, scaled_inputs)
pred = unscale_data(scaled_pred.tolist(), path)
debug.info(2,"Unscaled Prediction = {}".format(pred))
predictions[dname] = pred[0][0]
return predictions
def train_models(self):
"""
Generate and return models
"""
models = {}
for dname, dpath in data_paths.items():
features, labels = get_scaled_data(dpath)
model = self.generate_model(features, labels)
models[dname] = model
return models