mirror of https://github.com/YosysHQ/yosys.git
571 lines
19 KiB
C++
571 lines
19 KiB
C++
/*
|
||
* yosys -- Yosys Open SYnthesis Suite
|
||
*
|
||
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
|
||
*
|
||
* Permission to use, copy, modify, and/or distribute this software for any
|
||
* purpose with or without fee is hereby granted, provided that the above
|
||
* copyright notice and this permission notice appear in all copies.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
*
|
||
*/
|
||
|
||
#include "kernel/register.h"
|
||
#include "kernel/ffinit.h"
|
||
#include "kernel/sigtools.h"
|
||
#include "kernel/log.h"
|
||
#include "kernel/celltypes.h"
|
||
#include "kernel/threading.h"
|
||
#include "libs/sha1/sha1.h"
|
||
#include <stdlib.h>
|
||
#include <stdio.h>
|
||
#include <algorithm>
|
||
#include <set>
|
||
#include <unordered_map>
|
||
#include <array>
|
||
|
||
|
||
USING_YOSYS_NAMESPACE
|
||
PRIVATE_NAMESPACE_BEGIN
|
||
|
||
template <typename T, typename U>
|
||
inline Hasher hash_pair(const T &t, const U &u) { return hash_ops<std::pair<T, U>>::hash(t, u); }
|
||
|
||
// Some cell and its hash value.
|
||
struct CellHash
|
||
{
|
||
// Index of a cell in the module
|
||
int cell_index;
|
||
Hasher::hash_t hash_value;
|
||
};
|
||
|
||
// The algorithm:
|
||
// 1) Compute and store the hashes of all relevant cells, in parallel.
|
||
// 2) Given N = the number of threads, partition the cells into N buckets by hash value:
|
||
// bucket k contains the cells whose hash value mod N = k.
|
||
// 3) For each bucket in parallel, build a hashtable of that bucket’s cells (using the
|
||
// precomputed hashes) and record the duplicates found.
|
||
// 4) On the main thread, process the list of duplicates to remove cells.
|
||
// For efficiency we fuse the second step into the first step by having the parallel
|
||
// threads write the cells into buckets directly.
|
||
// To avoid synchronization overhead, we divide each bucket into N shards. Each
|
||
// thread j adds a cell to bucket k by writing to shard j of bucket k —
|
||
// no synchronization required. In the next phase, thread k builds the hashtable for
|
||
// bucket k by iterating over all shards of the bucket.
|
||
|
||
// The input to each thread in the "compute cell hashes" phase.
|
||
struct CellRange
|
||
{
|
||
int begin;
|
||
int end;
|
||
};
|
||
|
||
// The output from each thread in the "compute cell hashes" phase.
|
||
struct CellHashes
|
||
{
|
||
// Entry i contains the hashes where hash_value % bucketed_cell_hashes.size() == i
|
||
std::vector<std::vector<CellHash>> bucketed_cell_hashes;
|
||
};
|
||
|
||
// A duplicate cell that has been found.
|
||
struct DuplicateCell
|
||
{
|
||
// Remove this cell from the design
|
||
int remove_cell;
|
||
// ... and use this cell instead.
|
||
int keep_cell;
|
||
};
|
||
|
||
// The input to each thread in the "find duplicate cells" phase.
|
||
// Shards of buckets of cell hashes
|
||
struct Shards
|
||
{
|
||
std::vector<std::vector<std::vector<CellHash>>> &bucketed_cell_hashes;
|
||
};
|
||
|
||
// The output from each thread in the "find duplicate cells" phase.
|
||
struct FoundDuplicates
|
||
{
|
||
std::vector<DuplicateCell> duplicates;
|
||
};
|
||
|
||
struct OptMergeThreadWorker
|
||
{
|
||
const RTLIL::Module *module;
|
||
const SigMap &assign_map;
|
||
const FfInitVals &initvals;
|
||
const CellTypes &ct;
|
||
int workers;
|
||
bool mode_share_all;
|
||
bool mode_keepdc;
|
||
|
||
static Hasher hash_pmux_in(const SigSpec& sig_s, const SigSpec& sig_b, Hasher h)
|
||
{
|
||
int s_width = GetSize(sig_s);
|
||
int width = GetSize(sig_b) / s_width;
|
||
|
||
hashlib::commutative_hash comm;
|
||
for (int i = 0; i < s_width; i++)
|
||
comm.eat(hash_pair(sig_s[i], sig_b.extract(i*width, width)));
|
||
|
||
return comm.hash_into(h);
|
||
}
|
||
|
||
static void sort_pmux_conn(dict<RTLIL::IdString, RTLIL::SigSpec> &conn)
|
||
{
|
||
const SigSpec &sig_s = conn.at(ID::S);
|
||
const SigSpec &sig_b = conn.at(ID::B);
|
||
|
||
int s_width = GetSize(sig_s);
|
||
int width = GetSize(sig_b) / s_width;
|
||
|
||
vector<pair<SigBit, SigSpec>> sb_pairs;
|
||
for (int i = 0; i < s_width; i++)
|
||
sb_pairs.push_back(pair<SigBit, SigSpec>(sig_s[i], sig_b.extract(i*width, width)));
|
||
|
||
std::sort(sb_pairs.begin(), sb_pairs.end());
|
||
|
||
conn[ID::S] = SigSpec();
|
||
conn[ID::B] = SigSpec();
|
||
|
||
for (auto &it : sb_pairs) {
|
||
conn[ID::S].append(it.first);
|
||
conn[ID::B].append(it.second);
|
||
}
|
||
}
|
||
|
||
Hasher hash_cell_inputs(const RTLIL::Cell *cell, Hasher h) const
|
||
{
|
||
// TODO: when implemented, use celltypes to match:
|
||
// (builtin || stdcell) && (unary || binary) && symmetrical
|
||
if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($mul),
|
||
ID($logic_and), ID($logic_or), ID($_AND_), ID($_OR_), ID($_XOR_))) {
|
||
hashlib::commutative_hash comm;
|
||
comm.eat(assign_map(cell->getPort(ID::A)));
|
||
comm.eat(assign_map(cell->getPort(ID::B)));
|
||
h = comm.hash_into(h);
|
||
} else if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) {
|
||
SigSpec a = assign_map(cell->getPort(ID::A));
|
||
a.sort();
|
||
h = a.hash_into(h);
|
||
} else if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool))) {
|
||
SigSpec a = assign_map(cell->getPort(ID::A));
|
||
a.sort_and_unify();
|
||
h = a.hash_into(h);
|
||
} else if (cell->type == ID($pmux)) {
|
||
SigSpec sig_s = assign_map(cell->getPort(ID::S));
|
||
SigSpec sig_b = assign_map(cell->getPort(ID::B));
|
||
h = hash_pmux_in(sig_s, sig_b, h);
|
||
h = assign_map(cell->getPort(ID::A)).hash_into(h);
|
||
} else {
|
||
hashlib::commutative_hash comm;
|
||
for (const auto& [port, sig] : cell->connections()) {
|
||
if (cell->output(port))
|
||
continue;
|
||
comm.eat(hash_pair(port, assign_map(sig)));
|
||
}
|
||
h = comm.hash_into(h);
|
||
if (cell->is_builtin_ff())
|
||
h = initvals(cell->getPort(ID::Q)).hash_into(h);
|
||
}
|
||
return h;
|
||
}
|
||
|
||
static Hasher hash_cell_parameters(const RTLIL::Cell *cell, Hasher h)
|
||
{
|
||
hashlib::commutative_hash comm;
|
||
for (const auto& param : cell->parameters) {
|
||
comm.eat(param);
|
||
}
|
||
return comm.hash_into(h);
|
||
}
|
||
|
||
Hasher hash_cell_function(const RTLIL::Cell *cell, Hasher h) const
|
||
{
|
||
h.eat(cell->type);
|
||
h = hash_cell_inputs(cell, h);
|
||
h = hash_cell_parameters(cell, h);
|
||
return h;
|
||
}
|
||
|
||
bool compare_cell_parameters_and_connections(const RTLIL::Cell *cell1, const RTLIL::Cell *cell2) const
|
||
{
|
||
if (cell1 == cell2) return true;
|
||
if (cell1->type != cell2->type) return false;
|
||
|
||
if (cell1->parameters != cell2->parameters)
|
||
return false;
|
||
if (cell1->connections_.size() != cell2->connections_.size())
|
||
return false;
|
||
for (const auto &it : cell1->connections_)
|
||
if (!cell2->connections_.count(it.first))
|
||
return false;
|
||
|
||
decltype(Cell::connections_) conn1, conn2;
|
||
conn1.reserve(cell1->connections_.size());
|
||
conn2.reserve(cell1->connections_.size());
|
||
|
||
for (const auto &it : cell1->connections_) {
|
||
if (cell1->output(it.first)) {
|
||
if (it.first == ID::Q && cell1->is_builtin_ff()) {
|
||
// For the 'Q' output of state elements,
|
||
// use the (* init *) attribute value
|
||
conn1[it.first] = initvals(it.second);
|
||
conn2[it.first] = initvals(cell2->getPort(it.first));
|
||
}
|
||
else {
|
||
conn1[it.first] = RTLIL::SigSpec();
|
||
conn2[it.first] = RTLIL::SigSpec();
|
||
}
|
||
}
|
||
else {
|
||
conn1[it.first] = assign_map(it.second);
|
||
conn2[it.first] = assign_map(cell2->getPort(it.first));
|
||
}
|
||
}
|
||
|
||
if (cell1->type.in(ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($mul),
|
||
ID($logic_and), ID($logic_or), ID($_AND_), ID($_OR_), ID($_XOR_))) {
|
||
if (conn1.at(ID::A) < conn1.at(ID::B)) {
|
||
std::swap(conn1[ID::A], conn1[ID::B]);
|
||
}
|
||
if (conn2.at(ID::A) < conn2.at(ID::B)) {
|
||
std::swap(conn2[ID::A], conn2[ID::B]);
|
||
}
|
||
} else
|
||
if (cell1->type.in(ID($reduce_xor), ID($reduce_xnor))) {
|
||
conn1[ID::A].sort();
|
||
conn2[ID::A].sort();
|
||
} else
|
||
if (cell1->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool))) {
|
||
conn1[ID::A].sort_and_unify();
|
||
conn2[ID::A].sort_and_unify();
|
||
} else
|
||
if (cell1->type == ID($pmux)) {
|
||
sort_pmux_conn(conn1);
|
||
sort_pmux_conn(conn2);
|
||
}
|
||
|
||
return conn1 == conn2;
|
||
}
|
||
|
||
bool has_dont_care_initval(const RTLIL::Cell *cell) const
|
||
{
|
||
if (!cell->is_builtin_ff())
|
||
return false;
|
||
|
||
return !initvals(cell->getPort(ID::Q)).is_fully_def();
|
||
}
|
||
|
||
OptMergeThreadWorker(const RTLIL::Module *module, const FfInitVals &initvals,
|
||
const SigMap &assign_map, const CellTypes &ct, int workers,
|
||
bool mode_share_all, bool mode_keepdc) :
|
||
module(module), assign_map(assign_map), initvals(initvals), ct(ct),
|
||
workers(workers), mode_share_all(mode_share_all), mode_keepdc(mode_keepdc)
|
||
{
|
||
}
|
||
|
||
CellHashes compute_cell_hashes(const CellRange &cell_range) const
|
||
{
|
||
std::vector<std::vector<CellHash>> bucketed_cell_hashes(workers);
|
||
for (int cell_index = cell_range.begin; cell_index < cell_range.end; ++cell_index) {
|
||
const RTLIL::Cell *cell = module->cell_at(cell_index);
|
||
if (!module->selected(cell))
|
||
continue;
|
||
if (cell->type.in(ID($meminit), ID($meminit_v2), ID($mem), ID($mem_v2))) {
|
||
// Ignore those for performance: meminit can have an excessively large port,
|
||
// mem can have an excessively large parameter holding the init data
|
||
continue;
|
||
}
|
||
if (cell->type == ID($scopeinfo))
|
||
continue;
|
||
if (mode_keepdc && has_dont_care_initval(cell))
|
||
continue;
|
||
if (!cell->known())
|
||
continue;
|
||
if (!mode_share_all && !ct.cell_known(cell->type))
|
||
continue;
|
||
|
||
Hasher::hash_t h = hash_cell_function(cell, Hasher()).yield();
|
||
int bucket_index = h % workers;
|
||
bucketed_cell_hashes[bucket_index].push_back({cell_index, h});
|
||
}
|
||
return {std::move(bucketed_cell_hashes)};
|
||
}
|
||
|
||
FoundDuplicates find_duplicate_cells(int index, const Shards &in) const
|
||
{
|
||
// We keep a set of known cells. They're hashed with our hash_cell_function
|
||
// and compared with our compare_cell_parameters_and_connections.
|
||
struct CellHashOp {
|
||
std::size_t operator()(const CellHash &c) const {
|
||
return (std::size_t)c.hash_value;
|
||
}
|
||
};
|
||
struct CellEqualOp {
|
||
const OptMergeThreadWorker& worker;
|
||
CellEqualOp(const OptMergeThreadWorker& w) : worker(w) {}
|
||
bool operator()(const CellHash &lhs, const CellHash &rhs) const {
|
||
return worker.compare_cell_parameters_and_connections(
|
||
worker.module->cell_at(lhs.cell_index),
|
||
worker.module->cell_at(rhs.cell_index));
|
||
}
|
||
};
|
||
std::unordered_set<
|
||
CellHash,
|
||
CellHashOp,
|
||
CellEqualOp> known_cells(0, CellHashOp(), CellEqualOp(*this));
|
||
|
||
std::vector<DuplicateCell> duplicates;
|
||
for (const std::vector<std::vector<CellHash>> &buckets : in.bucketed_cell_hashes) {
|
||
// Clear out our buckets as we go. This keeps the work of deallocation
|
||
// off the main thread.
|
||
std::vector<CellHash> bucket = std::move(buckets[index]);
|
||
for (CellHash c : bucket) {
|
||
auto [cell_in_map, inserted] = known_cells.insert(c);
|
||
if (inserted)
|
||
continue;
|
||
CellHash map_c = *cell_in_map;
|
||
if (module->cell_at(c.cell_index)->has_keep_attr()) {
|
||
if (module->cell_at(map_c.cell_index)->has_keep_attr())
|
||
continue;
|
||
known_cells.erase(map_c);
|
||
known_cells.insert(c);
|
||
std::swap(c, map_c);
|
||
}
|
||
duplicates.push_back({c.cell_index, map_c.cell_index});
|
||
}
|
||
}
|
||
return {duplicates};
|
||
}
|
||
};
|
||
|
||
template <typename T>
|
||
void initialize_queues(std::vector<ConcurrentQueue<T>> &queues, int size) {
|
||
queues.reserve(size);
|
||
for (int i = 0; i < size; ++i)
|
||
queues.emplace_back(1);
|
||
}
|
||
|
||
struct OptMergeWorker
|
||
{
|
||
int total_count;
|
||
|
||
OptMergeWorker(RTLIL::Module *module, const CellTypes &ct, bool mode_share_all, bool mode_keepdc) :
|
||
total_count(0)
|
||
{
|
||
SigMap assign_map(module);
|
||
FfInitVals initvals;
|
||
initvals.set(&assign_map, module);
|
||
|
||
log("Finding identical cells in module `%s'.\n", module->name);
|
||
|
||
// Use no more than one worker per thousand cells, rounded down, so
|
||
// we only start multithreading with at least 2000 cells.
|
||
// TODO configurable limit?
|
||
int num_worker_threads = ThreadPool::pool_size(0, module->cells_size()/1000);
|
||
int workers = std::max(1, num_worker_threads);
|
||
|
||
// The main thread doesn't do any work, so if there is only one worker thread,
|
||
// just run everything on the main thread instead.
|
||
// This avoids creating and waiting on a thread, which is pretty high overhead
|
||
// for very small modules.
|
||
if (num_worker_threads == 1)
|
||
num_worker_threads = 0;
|
||
OptMergeThreadWorker thread_worker(module, initvals, assign_map, ct, workers, mode_share_all, mode_keepdc);
|
||
|
||
std::vector<ConcurrentQueue<CellRange>> cell_ranges_queues(num_worker_threads);
|
||
std::vector<ConcurrentQueue<CellHashes>> cell_hashes_queues(num_worker_threads);
|
||
std::vector<ConcurrentQueue<Shards>> shards_queues(num_worker_threads);
|
||
std::vector<ConcurrentQueue<FoundDuplicates>> duplicates_queues(num_worker_threads);
|
||
|
||
ThreadPool thread_pool(num_worker_threads, [&](int i) {
|
||
while (std::optional<CellRange> c = cell_ranges_queues[i].pop_front()) {
|
||
cell_hashes_queues[i].push_back(thread_worker.compute_cell_hashes(*c));
|
||
std::optional<Shards> shards = shards_queues[i].pop_front();
|
||
duplicates_queues[i].push_back(thread_worker.find_duplicate_cells(i, *shards));
|
||
}
|
||
});
|
||
|
||
bool did_something = true;
|
||
// A cell may have to go through a lot of collisions if the hash
|
||
// function is performing poorly, but it's a symptom of something bad
|
||
// beyond the user's control.
|
||
while (did_something)
|
||
{
|
||
int cells_size = module->cells_size();
|
||
log("Computing hashes of %d cells of `%s'.\n", cells_size, module->name);
|
||
std::vector<std::vector<std::vector<CellHash>>> sharded_bucketed_cell_hashes(workers);
|
||
|
||
int cell_index = 0;
|
||
int cells_size_mod_workers = cells_size % workers;
|
||
{
|
||
Multithreading multithreading;
|
||
for (int i = 0; i < workers; ++i) {
|
||
int num_cells = cells_size/workers + ((i < cells_size_mod_workers) ? 1 : 0);
|
||
CellRange c = { cell_index, cell_index + num_cells };
|
||
cell_index += num_cells;
|
||
if (num_worker_threads > 0)
|
||
cell_ranges_queues[i].push_back(c);
|
||
else
|
||
sharded_bucketed_cell_hashes[i] = std::move(thread_worker.compute_cell_hashes(c).bucketed_cell_hashes);
|
||
}
|
||
log_assert(cell_index == cells_size);
|
||
if (num_worker_threads > 0)
|
||
for (int i = 0; i < workers; ++i)
|
||
sharded_bucketed_cell_hashes[i] = std::move(cell_hashes_queues[i].pop_front()->bucketed_cell_hashes);
|
||
}
|
||
|
||
log("Finding duplicate cells in `%s'.\n", module->name);
|
||
std::vector<DuplicateCell> merged_duplicates;
|
||
{
|
||
Multithreading multithreading;
|
||
for (int i = 0; i < workers; ++i) {
|
||
Shards thread_shards = { sharded_bucketed_cell_hashes };
|
||
if (num_worker_threads > 0)
|
||
shards_queues[i].push_back(thread_shards);
|
||
else {
|
||
std::vector<DuplicateCell> d = std::move(thread_worker.find_duplicate_cells(i, thread_shards).duplicates);
|
||
merged_duplicates.insert(merged_duplicates.end(), d.begin(), d.end());
|
||
}
|
||
}
|
||
if (num_worker_threads > 0)
|
||
for (int i = 0; i < workers; ++i) {
|
||
std::vector<DuplicateCell> d = std::move(duplicates_queues[i].pop_front()->duplicates);
|
||
merged_duplicates.insert(merged_duplicates.end(), d.begin(), d.end());
|
||
}
|
||
}
|
||
std::sort(merged_duplicates.begin(), merged_duplicates.end(), [](const DuplicateCell &lhs, const DuplicateCell &rhs) {
|
||
// Sort them by the order in which duplicates would have been detected in a single-threaded
|
||
// run. The cell at which the duplicate would have been detected is the latter of the two
|
||
// cells involved.
|
||
return std::max(lhs.remove_cell, lhs.keep_cell) < std::max(rhs.remove_cell, rhs.keep_cell);
|
||
});
|
||
|
||
// Convert to cell pointers because removing cells will invalidate the indices.
|
||
std::vector<std::pair<RTLIL::Cell*, RTLIL::Cell*>> cell_ptrs;
|
||
for (DuplicateCell dup : merged_duplicates)
|
||
cell_ptrs.push_back({module->cell_at(dup.remove_cell), module->cell_at(dup.keep_cell)});
|
||
|
||
for (auto [remove_cell, keep_cell] : cell_ptrs)
|
||
{
|
||
log_debug(" Cell `%s' is identical to cell `%s'.\n", remove_cell->name, keep_cell->name);
|
||
for (auto &it : remove_cell->connections()) {
|
||
if (remove_cell->output(it.first)) {
|
||
RTLIL::SigSpec keep_sig = keep_cell->getPort(it.first);
|
||
log_debug(" Redirecting output %s: %s = %s\n", it.first,
|
||
log_signal(it.second), log_signal(keep_sig));
|
||
Const init = initvals(keep_sig);
|
||
initvals.remove_init(it.second);
|
||
initvals.remove_init(keep_sig);
|
||
module->connect(RTLIL::SigSig(it.second, keep_sig));
|
||
auto keep_sig_it = keep_sig.begin();
|
||
for (SigBit remove_sig_bit : it.second) {
|
||
assign_map.add(remove_sig_bit, *keep_sig_it);
|
||
++keep_sig_it;
|
||
}
|
||
initvals.set_init(keep_sig, init);
|
||
}
|
||
}
|
||
log_debug(" Removing %s cell `%s' from module `%s'.\n", remove_cell->type, remove_cell->name, module->name);
|
||
module->remove(remove_cell);
|
||
total_count++;
|
||
}
|
||
did_something = !merged_duplicates.empty();
|
||
}
|
||
|
||
for (ConcurrentQueue<CellRange> &q : cell_ranges_queues)
|
||
q.close();
|
||
|
||
for (ConcurrentQueue<Shards> &q : shards_queues)
|
||
q.close();
|
||
|
||
log_suppressed();
|
||
}
|
||
};
|
||
|
||
struct OptMergePass : public Pass {
|
||
OptMergePass() : Pass("opt_merge", "consolidate identical cells") { }
|
||
void help() override
|
||
{
|
||
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
||
log("\n");
|
||
log(" opt_merge [options] [selection]\n");
|
||
log("\n");
|
||
log("This pass identifies cells with identical type and input signals. Such cells\n");
|
||
log("are then merged to one cell.\n");
|
||
log("\n");
|
||
log(" -nomux\n");
|
||
log(" Do not merge MUX cells.\n");
|
||
log("\n");
|
||
log(" -share_all\n");
|
||
log(" Operate on all cell types, not just built-in types.\n");
|
||
log("\n");
|
||
log(" -keepdc\n");
|
||
log(" Do not merge flipflops with don't-care bits in their initial value.\n");
|
||
log("\n");
|
||
}
|
||
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
||
{
|
||
log_header(design, "Executing OPT_MERGE pass (detect identical cells).\n");
|
||
|
||
bool mode_nomux = false;
|
||
bool mode_share_all = false;
|
||
bool mode_keepdc = false;
|
||
|
||
size_t argidx;
|
||
for (argidx = 1; argidx < args.size(); argidx++) {
|
||
std::string arg = args[argidx];
|
||
if (arg == "-nomux") {
|
||
mode_nomux = true;
|
||
continue;
|
||
}
|
||
if (arg == "-share_all") {
|
||
mode_share_all = true;
|
||
continue;
|
||
}
|
||
if (arg == "-keepdc") {
|
||
mode_keepdc = true;
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
extra_args(args, argidx, design);
|
||
|
||
CellTypes ct;
|
||
ct.setup_internals();
|
||
ct.setup_internals_mem();
|
||
ct.setup_stdcells();
|
||
ct.setup_stdcells_mem();
|
||
if (mode_nomux) {
|
||
ct.cell_types.erase(ID($mux));
|
||
ct.cell_types.erase(ID($pmux));
|
||
}
|
||
ct.cell_types.erase(ID($tribuf));
|
||
ct.cell_types.erase(ID($_TBUF_));
|
||
ct.cell_types.erase(ID($anyseq));
|
||
ct.cell_types.erase(ID($anyconst));
|
||
ct.cell_types.erase(ID($allseq));
|
||
ct.cell_types.erase(ID($allconst));
|
||
|
||
int total_count = 0;
|
||
for (auto module : design->selected_modules()) {
|
||
OptMergeWorker worker(module, ct, mode_share_all, mode_keepdc);
|
||
total_count += worker.total_count;
|
||
}
|
||
|
||
if (total_count)
|
||
design->scratchpad_set_bool("opt.did_something", true);
|
||
log("Removed a total of %d cells.\n", total_count);
|
||
}
|
||
} OptMergePass;
|
||
|
||
PRIVATE_NAMESPACE_END
|