Parallelize `opt_merge`.

I'm not sure why but this is actually faster than existing `opt_merge` even with
YOSYS_MAX_THREADS=1, for the jpeg synthesis test. 16.0s before, 15.5s after for
end-to-end synthesis.
This commit is contained in:
Robert O'Callahan 2025-11-25 01:35:00 +00:00
parent 1cceaa2a80
commit 755836cd60
3 changed files with 294 additions and 106 deletions

View File

@ -1321,6 +1321,12 @@ public:
return i < 0 ? 0 : 1;
}
int lookup(const K &key) const
{
Hasher::hash_t hash = database.do_hash(key);
return database.do_lookup_no_rehash(key, hash);
}
void expect(const K &key, int i)
{
int j = (*this)(key);

View File

@ -2140,6 +2140,8 @@ public:
RTLIL::ObjRange<RTLIL::Wire*> wires() { return RTLIL::ObjRange<RTLIL::Wire*>(&wires_, &refcount_wires_); }
RTLIL::ObjRange<RTLIL::Cell*> cells() { return RTLIL::ObjRange<RTLIL::Cell*>(&cells_, &refcount_cells_); }
int cells_size() const { return cells_.size(); }
RTLIL::Cell* cell_at(int index) const { return cells_.element(index)->second; }
void add(RTLIL::Binding *binding);

View File

@ -22,6 +22,7 @@
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "kernel/celltypes.h"
#include "kernel/threading.h"
#include "libs/sha1/sha1.h"
#include <stdlib.h>
#include <stdio.h>
@ -37,16 +38,72 @@ PRIVATE_NAMESPACE_BEGIN
template <typename T, typename U>
inline Hasher hash_pair(const T &t, const U &u) { return hash_ops<std::pair<T, U>>::hash(t, u); }
struct OptMergeWorker
// Some cell and its hash value.
struct CellHash
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap assign_map;
FfInitVals initvals;
bool mode_share_all;
// Index of a cell in the module
int cell_index;
Hasher::hash_t hash_value;
};
CellTypes ct;
int total_count;
// The algorithm:
// 1) Compute and store the hashes of all relevant cells, in parallel.
// 2) Given N = the number of threads, partition the cells into N buckets by hash value:
// bucket k contains the cells whose hash value mod N = k.
// 3) For each bucket in parallel, build a hashtable of that buckets cells (using the
// precomputed hashes) and record the duplicates found.
// 4) On the main thread, process the list of duplicates to remove cells.
// For efficiency we fuse the second step into the first step by having the parallel
// threads write the cells into buckets directly.
// To avoid synchronization overhead, we divide each bucket into N shards. Each
// thread j adds a cell to bucket k by writing to shard j of bucket k —
// no synchronization required. In the next phase, thread k builds the hashtable for
// bucket k by iterating over all shards of the bucket.
// The input to each thread in the "compute cell hashes" phase.
struct ComputeCellHashes
{
int cell_index_begin;
int cell_index_end;
};
// The output from each thread in the "compute cell hashes" phase.
struct ComputeCellHashesOut
{
// Entry i contains the hashes where hash_value % bucketed_cell_hashes.size() == i
std::vector<std::vector<CellHash>> bucketed_cell_hashes;
};
// A duplicate cell that has been found.
struct DuplicateCell
{
// Remove this cell from the design
int remove_cell;
// ... and use this cell instead.
int keep_cell;
};
// The input to each thread in the "find duplicate cells" phase.
struct FindDuplicateCells
{
std::vector<std::vector<std::vector<CellHash>>> &bucketed_cell_hashes;
};
// The oputut from each thread in the "find duplicate cells" phase.
struct FindDuplicateCellsOut
{
std::vector<DuplicateCell> duplicates;
};
struct OptMergeThreadWorker
{
const RTLIL::Module *module;
const SigMap &assign_map;
const FfInitVals &initvals;
const CellTypes &ct;
int workers;
bool mode_share_all;
bool mode_keepdc;
static Hasher hash_pmux_in(const SigSpec& sig_s, const SigSpec& sig_b, Hasher h)
{
@ -62,8 +119,8 @@ struct OptMergeWorker
static void sort_pmux_conn(dict<RTLIL::IdString, RTLIL::SigSpec> &conn)
{
SigSpec sig_s = conn.at(ID::S);
SigSpec sig_b = conn.at(ID::B);
const SigSpec &sig_s = conn.at(ID::S);
const SigSpec &sig_b = conn.at(ID::B);
int s_width = GetSize(sig_s);
int width = GetSize(sig_b) / s_width;
@ -144,7 +201,6 @@ struct OptMergeWorker
if (cell1->parameters != cell2->parameters)
return false;
if (cell1->connections_.size() != cell2->connections_.size())
return false;
for (const auto &it : cell1->connections_)
@ -199,7 +255,7 @@ struct OptMergeWorker
return conn1 == conn2;
}
bool has_dont_care_initval(const RTLIL::Cell *cell)
bool has_dont_care_initval(const RTLIL::Cell *cell) const
{
if (!cell->is_builtin_ff())
return false;
@ -207,31 +263,133 @@ struct OptMergeWorker
return !initvals(cell->getPort(ID::Q)).is_fully_def();
}
OptMergeWorker(RTLIL::Design *design, RTLIL::Module *module, bool mode_nomux, bool mode_share_all, bool mode_keepdc) :
design(design), module(module), mode_share_all(mode_share_all)
OptMergeThreadWorker(const RTLIL::Module *module, const FfInitVals &initvals,
const SigMap &assign_map, const CellTypes &ct, int workers,
bool mode_share_all, bool mode_keepdc) :
module(module), assign_map(assign_map), initvals(initvals), ct(ct),
workers(workers), mode_share_all(mode_share_all), mode_keepdc(mode_keepdc)
{
total_count = 0;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
}
if (mode_nomux) {
ct.cell_types.erase(ID($mux));
ct.cell_types.erase(ID($pmux));
ComputeCellHashesOut compute_cell_hashes(const ComputeCellHashes &in) const
{
std::vector<std::vector<CellHash>> bucketed_cell_hashes(workers);
for (int cell_index = in.cell_index_begin; cell_index < in.cell_index_end; ++cell_index) {
const RTLIL::Cell *cell = module->cell_at(cell_index);
if (!module->selected(cell))
continue;
if (cell->type.in(ID($meminit), ID($meminit_v2), ID($mem), ID($mem_v2))) {
// Ignore those for performance: meminit can have an excessively large port,
// mem can have an excessively large parameter holding the init data
continue;
}
if (cell->type == ID($scopeinfo))
continue;
if (mode_keepdc && has_dont_care_initval(cell))
continue;
if (!cell->known())
continue;
if (!mode_share_all && !ct.cell_known(cell->type))
continue;
Hasher::hash_t h = hash_cell_function(cell, Hasher()).yield();
int bucket_index = h % workers;
bucketed_cell_hashes[bucket_index].push_back({cell_index, h});
}
return {std::move(bucketed_cell_hashes)};
}
ct.cell_types.erase(ID($tribuf));
ct.cell_types.erase(ID($_TBUF_));
ct.cell_types.erase(ID($anyseq));
ct.cell_types.erase(ID($anyconst));
ct.cell_types.erase(ID($allseq));
ct.cell_types.erase(ID($allconst));
FindDuplicateCellsOut find_duplicate_cells(int index, const FindDuplicateCells &in) const
{
// We keep a set of known cells. They're hashed with our hash_cell_function
// and compared with our compare_cell_parameters_and_connections.
struct CellHashOp {
std::size_t operator()(const CellHash &c) const {
return (std::size_t)c.hash_value;
}
};
struct CellEqualOp {
const OptMergeThreadWorker& worker;
CellEqualOp(const OptMergeThreadWorker& w) : worker(w) {}
bool operator()(const CellHash &lhs, const CellHash &rhs) const {
return worker.compare_cell_parameters_and_connections(
worker.module->cell_at(lhs.cell_index),
worker.module->cell_at(rhs.cell_index));
}
};
std::unordered_set<
CellHash,
CellHashOp,
CellEqualOp> known_cells(0, CellHashOp(), CellEqualOp(*this));
std::vector<DuplicateCell> duplicates;
for (const std::vector<std::vector<CellHash>> &buckets : in.bucketed_cell_hashes) {
// Clear out our buckets as we go. This keeps the work of deallocation
// off the main thread.
std::vector<CellHash> bucket = std::move(buckets[index]);
for (CellHash c : bucket) {
auto [cell_in_map, inserted] = known_cells.insert(c);
if (inserted)
continue;
CellHash map_c = *cell_in_map;
if (module->cell_at(c.cell_index)->has_keep_attr()) {
if (module->cell_at(map_c.cell_index)->has_keep_attr())
continue;
known_cells.erase(map_c);
known_cells.insert(c);
std::swap(c, map_c);
}
duplicates.push_back({c.cell_index, map_c.cell_index});
}
}
return {duplicates};
}
};
template <typename T>
void initialize_queues(std::vector<ConcurrentQueue<T>> &queues, int size) {
queues.reserve(size);
for (int i = 0; i < size; ++i)
queues.emplace_back(1);
}
struct OptMergeWorker
{
int total_count;
OptMergeWorker(RTLIL::Module *module, const CellTypes &ct, bool mode_share_all, bool mode_keepdc) :
total_count(0)
{
SigMap assign_map(module);
FfInitVals initvals;
initvals.set(&assign_map, module);
log("Finding identical cells in module `%s'.\n", module->name);
assign_map.set(module);
initvals.set(&assign_map, module);
// Use no more than one worker per thousand cells, rounded down, so
// we only start multithreading with at least 2000 cells.
int num_worker_threads = ThreadPool::pool_size(0, module->cells_size()/1000);
int workers = std::max(1, num_worker_threads);
// The main thread doesn't do any work, so if there is only one worker thread,
// just run everything on the main thread instead.
// This avoids creating and waiting on a thread, which is pretty high overhead
// for very small modules.
if (num_worker_threads == 1)
num_worker_threads = 0;
OptMergeThreadWorker thread_worker(module, initvals, assign_map, ct, workers, mode_share_all, mode_keepdc);
std::vector<ConcurrentQueue<ComputeCellHashes>> compute_cell_hashes(num_worker_threads);
std::vector<ConcurrentQueue<ComputeCellHashesOut>> compute_cell_hashes_out(num_worker_threads);
std::vector<ConcurrentQueue<FindDuplicateCells>> find_duplicate_cells(num_worker_threads);
std::vector<ConcurrentQueue<FindDuplicateCellsOut>> find_duplicate_cells_out(num_worker_threads);
ThreadPool thread_pool(num_worker_threads, [&](int i) {
while (std::optional<ComputeCellHashes> c = compute_cell_hashes[i].pop_front()) {
compute_cell_hashes_out[i].push_back(thread_worker.compute_cell_hashes(*c));
std::optional<FindDuplicateCells> f = find_duplicate_cells[i].pop_front();
find_duplicate_cells_out[i].push_back(thread_worker.find_duplicate_cells(i, *f));
}
});
bool did_something = true;
// A cell may have to go through a lot of collisions if the hash
@ -239,87 +397,93 @@ struct OptMergeWorker
// beyond the user's control.
while (did_something)
{
std::vector<RTLIL::Cell*> cells;
cells.reserve(module->cells().size());
for (auto cell : module->cells()) {
if (!design->selected(module, cell))
continue;
if (cell->type.in(ID($meminit), ID($meminit_v2), ID($mem), ID($mem_v2))) {
// Ignore those for performance: meminit can have an excessively large port,
// mem can have an excessively large parameter holding the init data
continue;
}
if (cell->type == ID($scopeinfo))
continue;
if (mode_keepdc && has_dont_care_initval(cell))
continue;
if (!cell->known())
continue;
if (!mode_share_all && !ct.cell_known(cell->type))
continue;
cells.push_back(cell);
}
int cells_size = module->cells_size();
log("Computing hashes of %d cells of `%s'.\n", cells_size, module->name);
std::vector<std::vector<std::vector<CellHash>>> bucketed_cell_hashes(workers);
did_something = false;
// We keep a set of known cells. They're hashed with our hash_cell_function
// and compared with our compare_cell_parameters_and_connections.
// Both need to capture OptMergeWorker to access initvals
struct CellPtrHash {
const OptMergeWorker& worker;
CellPtrHash(const OptMergeWorker& w) : worker(w) {}
std::size_t operator()(const Cell* c) const {
return (std::size_t)worker.hash_cell_function(c, Hasher()).yield();
}
};
struct CellPtrEqual {
const OptMergeWorker& worker;
CellPtrEqual(const OptMergeWorker& w) : worker(w) {}
bool operator()(const Cell* lhs, const Cell* rhs) const {
return worker.compare_cell_parameters_and_connections(lhs, rhs);
}
};
std::unordered_set<
RTLIL::Cell*,
CellPtrHash,
CellPtrEqual> known_cells (0, CellPtrHash(*this), CellPtrEqual(*this));
for (auto cell : cells)
int cell_index = 0;
int cells_size_mod_workers = cells_size % workers;
{
auto [cell_in_map, inserted] = known_cells.insert(cell);
if (!inserted) {
// We've failed to insert since we already have an equivalent cell
Cell* other_cell = *cell_in_map;
if (cell->has_keep_attr()) {
if (other_cell->has_keep_attr())
continue;
known_cells.erase(other_cell);
known_cells.insert(cell);
std::swap(other_cell, cell);
}
did_something = true;
log_debug(" Cell `%s' is identical to cell `%s'.\n", cell->name, other_cell->name);
for (auto &it : cell->connections()) {
if (cell->output(it.first)) {
RTLIL::SigSpec other_sig = other_cell->getPort(it.first);
log_debug(" Redirecting output %s: %s = %s\n", it.first,
log_signal(it.second), log_signal(other_sig));
Const init = initvals(other_sig);
initvals.remove_init(it.second);
initvals.remove_init(other_sig);
module->connect(RTLIL::SigSig(it.second, other_sig));
assign_map.add(it.second, other_sig);
initvals.set_init(other_sig, init);
}
}
log_debug(" Removing %s cell `%s' from module `%s'.\n", cell->type, cell->name, module->name);
module->remove(cell);
total_count++;
Multithreading multithreading;
for (int i = 0; i < workers; ++i) {
int num_cells = cells_size/workers + ((i < cells_size_mod_workers) ? 1 : 0);
ComputeCellHashes c = { cell_index, cell_index + num_cells };
cell_index += num_cells;
if (num_worker_threads > 0)
compute_cell_hashes[i].push_back(c);
else
bucketed_cell_hashes[i] = std::move(thread_worker.compute_cell_hashes(c).bucketed_cell_hashes);
}
log_assert(cell_index == cells_size);
if (num_worker_threads > 0)
for (int i = 0; i < workers; ++i)
bucketed_cell_hashes[i] = std::move(compute_cell_hashes_out[i].pop_front()->bucketed_cell_hashes);
}
log("Finding duplicate cells in `%s'.\n", module->name);
std::vector<DuplicateCell> duplicates;
{
Multithreading multithreading;
for (int i = 0; i < workers; ++i) {
FindDuplicateCells f = { bucketed_cell_hashes };
if (num_worker_threads > 0)
find_duplicate_cells[i].push_back(f);
else {
std::vector<DuplicateCell> d = std::move(thread_worker.find_duplicate_cells(i, f).duplicates);
duplicates.insert(duplicates.end(), d.begin(), d.end());
}
}
if (num_worker_threads > 0)
for (int i = 0; i < workers; ++i) {
std::vector<DuplicateCell> d = std::move(find_duplicate_cells_out[i].pop_front()->duplicates);
duplicates.insert(duplicates.end(), d.begin(), d.end());
}
}
std::sort(duplicates.begin(), duplicates.end(), [](const DuplicateCell &lhs, const DuplicateCell &rhs) {
// Sort them by the order in which duplicates would have been detected in a single-threaded
// run. The cell at which the duplicate would have been detected is the later of the two
// cells involved.
return std::max(lhs.remove_cell, lhs.keep_cell) < std::max(rhs.remove_cell, rhs.keep_cell);
});
// Convert to cell pointers because removing cells will invalidate the indices.
std::vector<std::pair<RTLIL::Cell*, RTLIL::Cell*>> cell_ptrs;
for (DuplicateCell dup : duplicates)
cell_ptrs.push_back({module->cell_at(dup.remove_cell), module->cell_at(dup.keep_cell)});
for (auto [remove_cell, keep_cell] : cell_ptrs)
{
log_debug(" Cell `%s' is identical to cell `%s'.\n", remove_cell->name, keep_cell->name);
for (auto &it : remove_cell->connections()) {
if (remove_cell->output(it.first)) {
RTLIL::SigSpec keep_sig = keep_cell->getPort(it.first);
log_debug(" Redirecting output %s: %s = %s\n", it.first,
log_signal(it.second), log_signal(keep_sig));
Const init = initvals(keep_sig);
initvals.remove_init(it.second);
initvals.remove_init(keep_sig);
module->connect(RTLIL::SigSig(it.second, keep_sig));
auto keep_sig_it = keep_sig.begin();
for (SigBit remove_sig_bit : it.second) {
assign_map.add(remove_sig_bit, *keep_sig_it);
++keep_sig_it;
}
initvals.set_init(keep_sig, init);
}
}
log_debug(" Removing %s cell `%s' from module `%s'.\n", remove_cell->type, remove_cell->name, module->name);
module->remove(remove_cell);
total_count++;
}
did_something = !duplicates.empty();
}
for (ConcurrentQueue<ComputeCellHashes> &q : compute_cell_hashes)
q.close();
for (ConcurrentQueue<FindDuplicateCells> &q : find_duplicate_cells)
q.close();
log_suppressed();
}
};
@ -372,9 +536,25 @@ struct OptMergePass : public Pass {
}
extra_args(args, argidx, design);
CellTypes ct;
ct.setup_internals();
ct.setup_internals_mem();
ct.setup_stdcells();
ct.setup_stdcells_mem();
if (mode_nomux) {
ct.cell_types.erase(ID($mux));
ct.cell_types.erase(ID($pmux));
}
ct.cell_types.erase(ID($tribuf));
ct.cell_types.erase(ID($_TBUF_));
ct.cell_types.erase(ID($anyseq));
ct.cell_types.erase(ID($anyconst));
ct.cell_types.erase(ID($allseq));
ct.cell_types.erase(ID($allconst));
int total_count = 0;
for (auto module : design->selected_modules()) {
OptMergeWorker worker(design, module, mode_nomux, mode_share_all, mode_keepdc);
OptMergeWorker worker(module, ct, mode_share_all, mode_keepdc);
total_count += worker.total_count;
}