verilator/src/V3DfgAstToDfg.cpp

1018 lines
43 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Convert AstModule to DfgGraph
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// Convert and AstModule to a DfgGraph. We proceed by visiting convertible logic blocks (e.g.:
// AstAssignW of appropriate type and with no delays), recursively constructing DfgVertex instances
// for the expressions that compose the subject logic block. If all expressions in the current
// logic block can be converted, then we delete the logic block (now represented in the DfgGraph),
// and connect the corresponding DfgVertex instances appropriately. If some of the expressions were
// not convertible in the current logic block, we revert (delete) the DfgVertex instances created
// for the logic block, and leave the logic block in the AstModule. Any variable reference from
// non-converted logic blocks (or other constructs under the AstModule) are marked as being
// referenced in the AstModule, which is relevant for later optimization.
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3Const.h"
#include "V3Dfg.h"
#include "V3DfgPasses.h"
#include <iterator>
VL_DEFINE_DEBUG_FUNCTIONS;
namespace {
// Create a DfgVertex out of a AstNodeExpr. For most AstNodeExpr subtypes, this can be done
// automatically. For the few special cases, we provide specializations below
template <typename T_Vertex, typename T_Node>
T_Vertex* makeVertex(const T_Node* nodep, DfgGraph& dfg) {
return new T_Vertex{dfg, nodep->fileline(), DfgVertex::dtypeFor(nodep)};
}
template <>
DfgArraySel* makeVertex<DfgArraySel, AstArraySel>(const AstArraySel* nodep, DfgGraph& dfg) {
// Some earlier passes create malformed ArraySels, just bail on those...
// See t_bitsel_wire_array_bad
if (VN_IS(nodep->fromp(), Const)) return nullptr;
if (!VN_IS(nodep->fromp()->dtypep()->skipRefp(), UnpackArrayDType)) return nullptr;
return new DfgArraySel{dfg, nodep->fileline(), DfgVertex::dtypeFor(nodep)};
}
} //namespace
// Visitor that can convert combinational Ast logic constructs/assignments to Dfg
template <bool T_Scoped>
class AstToDfgConverter final : public VNVisitor {
// NODE STATE
// AstNodeExpr/AstVar/AstVarScope::user2p -> DfgVertex* for this Node
// TYPES
using Variable = std::conditional_t<T_Scoped, AstVarScope, AstVar>;
// STATE
DfgGraph& m_dfg; // The graph being built
V3DfgAstToDfgContext& m_ctx; // The context for stats
bool m_foundUnhandled = false; // Found node not implemented as DFG or not implemented 'visit'
bool m_converting = false; // We are trying to convert some logic at the moment
std::vector<DfgVertexSplice*> m_uncommittedSpliceps; // New splices made during convertLValue
// METHODS
static Variable* getTarget(const AstVarRef* refp) {
// TODO: remove the useless reinterpret_casts when C++17 'if constexpr' actually works
if VL_CONSTEXPR_CXX17 (T_Scoped) {
return reinterpret_cast<Variable*>(refp->varScopep());
} else {
return reinterpret_cast<Variable*>(refp->varp());
}
}
DfgVertexVar* getNet(Variable* varp) {
if (!varp->user2p()) {
AstNodeDType* const dtypep = varp->dtypep()->skipRefp();
DfgVertexVar* const vtxp
= VN_IS(dtypep, UnpackArrayDType)
? static_cast<DfgVertexVar*>(new DfgVarArray{m_dfg, varp})
: static_cast<DfgVertexVar*>(new DfgVarPacked{m_dfg, varp});
varp->user2p(vtxp);
}
return varp->user2u().template to<DfgVertexVar*>();
}
// Returns true if the expression cannot (or should not) be represented by DFG
bool unhandled(AstNodeExpr* nodep) {
// Short-circuiting if something was already unhandled
if (!m_foundUnhandled) {
// Impure nodes cannot be represented
if (!nodep->isPure()) {
m_foundUnhandled = true;
++m_ctx.m_nonRepImpure;
}
// Check node has supported dtype
if (!DfgVertex::isSupportedDType(nodep->dtypep())) {
m_foundUnhandled = true;
++m_ctx.m_nonRepDType;
}
}
return m_foundUnhandled;
}
bool isSupported(const AstVar* varp) {
if (varp->isIfaceRef()) return false; // Cannot handle interface references
if (varp->delayp()) return false; // Cannot handle delayed variables
if (varp->isSc()) return false; // SystemC variables are special and rare, we can ignore
return DfgVertex::isSupportedDType(varp->dtypep());
}
bool isSupported(const AstVarScope* vscp) {
// Check the Var fist
if (!isSupported(vscp->varp())) return false;
// If the variable is not in a regular module, then do not convert it.
// This is especially needed for variabels in interfaces which might be
// referenced via virtual intefaces, which cannot be resovled statically.
if (!VN_IS(vscp->scopep()->modp(), Module)) return false;
// Otherwise OK
return true;
}
bool isSupported(const AstVarRef* nodep) {
// Cannot represent cross module references
if (nodep->classOrPackagep()) return false;
// Check target
return isSupported(getTarget(nodep));
}
// Given an RValue expression, return the equivalent Vertex, or nullptr if not representable.
DfgVertex* convertRValue(AstNodeExpr* nodep) {
UASSERT_OBJ(!m_converting, nodep, "'convertingRValue' should not be called recursively");
VL_RESTORER(m_converting);
VL_RESTORER(m_foundUnhandled);
m_converting = true;
m_foundUnhandled = false;
// Convert the expression
iterate(nodep);
// If falied to convert, return nullptr
if (m_foundUnhandled) return nullptr;
// Traversal set user2p to the equivalent vertex
DfgVertex* const vtxp = nodep->user2u().to<DfgVertex*>();
UASSERT_OBJ(vtxp, nodep, "Missing Dfg vertex after covnersion");
return vtxp;
}
// Given an LValue expression, return the splice node that writes the
// destination, together with the index to use for splicing in the value.
// Returns {nullptr, 0}, if the given LValue expression is not supported.
std::pair<DfgVertexSplice*, uint32_t> convertLValue(AstNodeExpr* nodep) {
if (AstVarRef* const vrefp = VN_CAST(nodep, VarRef)) {
if (!isSupported(vrefp)) {
++m_ctx.m_nonRepLhs;
return {nullptr, 0};
}
// Get the variable vertex
DfgVertexVar* const vtxp = getNet(getTarget(vrefp));
// Ensure the Splice driver exists for this variable
if (!vtxp->srcp()) {
FileLine* const flp = vtxp->fileline();
AstNodeDType* const dtypep = vtxp->dtypep();
if (vtxp->is<DfgVarPacked>()) {
DfgSplicePacked* const newp = new DfgSplicePacked{m_dfg, flp, dtypep};
m_uncommittedSpliceps.emplace_back(newp);
vtxp->srcp(newp);
} else if (vtxp->is<DfgVarArray>()) {
DfgSpliceArray* const newp = new DfgSpliceArray{m_dfg, flp, dtypep};
m_uncommittedSpliceps.emplace_back(newp);
vtxp->srcp(newp);
} else {
nodep->v3fatalSrc("Unhandled DfgVertexVar sub-type"); // LCOV_EXCL_LINE
}
}
// Return the Splice driver
return {vtxp->srcp()->as<DfgVertexSplice>(), 0};
}
if (AstSel* selp = VN_CAST(nodep, Sel)) {
// Only handle constant selects
const AstConst* const lsbp = VN_CAST(selp->lsbp(), Const);
if (!lsbp) {
++m_ctx.m_nonRepLhs;
return {nullptr, 0};
}
uint32_t lsb = lsbp->toUInt();
// Convert the 'fromp' sub-expression
const auto pair = convertLValue(selp->fromp());
if (!pair.first) return {nullptr, 0};
DfgSplicePacked* const splicep = pair.first->template as<DfgSplicePacked>();
// Adjust index.
lsb += pair.second;
// AstSel doesn't change type kind (array vs packed), so we can use
// the existing splice driver with adjusted lsb
return {splicep, lsb};
}
if (AstArraySel* const aselp = VN_CAST(nodep, ArraySel)) {
// Only handle constant selects
const AstConst* const indexp = VN_CAST(aselp->bitp(), Const);
if (!indexp) {
++m_ctx.m_nonRepLhs;
return {nullptr, 0};
}
uint32_t index = indexp->toUInt();
// Convert the 'fromp' sub-expression
const auto pair = convertLValue(aselp->fromp());
if (!pair.first) return {nullptr, 0};
DfgSpliceArray* const splicep = pair.first->template as<DfgSpliceArray>();
// Adjust index. Note pair.second is always 0, but we might handle array slices later..
index += pair.second;
// Ensure the Splice driver exists for this element
if (!splicep->driverAt(index)) {
FileLine* const flp = nodep->fileline();
AstNodeDType* const dtypep = DfgVertex::dtypeFor(nodep);
if (VN_IS(dtypep, BasicDType)) {
DfgSplicePacked* const newp = new DfgSplicePacked{m_dfg, flp, dtypep};
m_uncommittedSpliceps.emplace_back(newp);
splicep->addDriver(flp, index, newp);
} else if (VN_IS(dtypep, UnpackArrayDType)) {
DfgSpliceArray* const newp = new DfgSpliceArray{m_dfg, flp, dtypep};
m_uncommittedSpliceps.emplace_back(newp);
splicep->addDriver(flp, index, newp);
} else {
nodep->v3fatalSrc("Unhandled AstNodeDType sub-type"); // LCOV_EXCL_LINE
}
}
// Return the splice driver
return {splicep->driverAt(index)->as<DfgVertexSplice>(), 0};
}
++m_ctx.m_nonRepLhs;
return {nullptr, 0};
}
// Given the LHS of an assignment, and the vertex representing the RHS,
// connect up the RHS to drive the targets.
// Returns true on success, false if the LHS is not representable.
bool convertAssignment(FileLine* flp, AstNodeExpr* lhsp, DfgVertex* vtxp) {
// Represents a DFG assignment contributed by the AST assignment with the above 'lhsp'.
// There might be multiple of these if 'lhsp' is a concatenation.
struct Assignment final {
DfgVertexSplice* m_lhsp;
uint32_t m_idx;
DfgVertex* m_rhsp;
Assignment() = delete;
Assignment(DfgVertexSplice* lhsp, uint32_t idx, DfgVertex* rhsp)
: m_lhsp{lhsp}
, m_idx{idx}
, m_rhsp{rhsp} {}
};
// Convert each concatenation LHS separately, gather all assignments
// we need to do into 'assignments', return true if all LValues
// converted successfully.
std::vector<Assignment> assignments;
const std::function<bool(AstNodeExpr*, DfgVertex*)> convertAllLValues
= [&](AstNodeExpr* lhsp, DfgVertex* vtxp) -> bool {
// Simplify the LHS, to get rid of things like SEL(CONCAT(_, _), _)
lhsp = VN_AS(V3Const::constifyExpensiveEdit(lhsp), NodeExpr);
// Concatenation on the LHS, convert each parts
if (AstConcat* const concatp = VN_CAST(lhsp, Concat)) {
AstNodeExpr* const cLhsp = concatp->lhsp();
AstNodeExpr* const cRhsp = concatp->rhsp();
// Convert Left of concat
FileLine* const lFlp = cLhsp->fileline();
DfgSel* const lVtxp = new DfgSel{m_dfg, lFlp, DfgVertex::dtypeFor(cLhsp)};
lVtxp->fromp(vtxp);
lVtxp->lsb(cRhsp->width());
if (!convertAllLValues(cLhsp, lVtxp)) return false;
// Convert Rigth of concat
FileLine* const rFlp = cRhsp->fileline();
DfgSel* const rVtxp = new DfgSel{m_dfg, rFlp, DfgVertex::dtypeFor(cRhsp)};
rVtxp->fromp(vtxp);
rVtxp->lsb(0);
return convertAllLValues(cRhsp, rVtxp);
}
// Non-concatenation, convert the LValue
const auto pair = convertLValue(lhsp);
if (!pair.first) return false;
assignments.emplace_back(pair.first, pair.second, vtxp);
return true;
};
// Convert the given LHS assignment, give up if any LValues failed to convert
if (!convertAllLValues(lhsp, vtxp)) {
for (DfgVertexSplice* const splicep : m_uncommittedSpliceps) {
VL_DO_DANGLING(splicep->unlinkDelete(m_dfg), splicep);
}
m_uncommittedSpliceps.clear();
return false;
}
m_uncommittedSpliceps.clear();
// All successful, connect the drivers
for (const Assignment& a : assignments) {
if (DfgSplicePacked* const spp = a.m_lhsp->template cast<DfgSplicePacked>()) {
spp->addDriver(flp, a.m_idx, a.m_rhsp);
} else if (DfgSpliceArray* const sap = a.m_lhsp->template cast<DfgSpliceArray>()) {
sap->addDriver(flp, a.m_idx, a.m_rhsp);
} else {
a.m_lhsp->v3fatalSrc("Unhandled DfgVertexSplice sub-type"); // LCOV_EXCL_LINE
}
}
return true;
}
// Convert the assignment with the given LHS and RHS into DFG.
// Returns true on success, false if not representable.
bool convertEquation(FileLine* flp, AstNodeExpr* lhsp, AstNodeExpr* rhsp) {
// Check data types are compatible.
if (!DfgVertex::isSupportedDType(lhsp->dtypep())
|| !DfgVertex::isSupportedDType(rhsp->dtypep())) {
++m_ctx.m_nonRepDType;
return false;
}
// For now, only direct array assignment is supported (e.g. a = b, but not a = _ ? b : c)
if (VN_IS(rhsp->dtypep()->skipRefp(), UnpackArrayDType) && !VN_IS(rhsp, VarRef)) {
++m_ctx.m_nonRepDType;
return false;
}
// Cannot handle mismatched widths. Mismatched assignments should have been fixed up in
// earlier passes anyway, so this should never be hit, but being paranoid just in case.
if (lhsp->width() != rhsp->width()) { // LCOV_EXCL_START
++m_ctx.m_nonRepWidth;
return false;
} // LCOV_EXCL_STOP
// Convert the RHS expression
DfgVertex* const rVtxp = convertRValue(rhsp);
if (!rVtxp) return false;
// Connect the RHS vertex to the LHS targets
if (!convertAssignment(flp, lhsp, rVtxp)) return false;
// All good
++m_ctx.m_representable;
return true;
}
// Convert an AstNodeAssign (AstAssign or AstAssignW)
bool convertNodeAssign(AstNodeAssign* nodep) {
UASSERT_OBJ(VN_IS(nodep, AssignW) || VN_IS(nodep, Assign), nodep, "Invalid subtype");
++m_ctx.m_inputEquations;
// Cannot handle assignment with timing control yet
if (nodep->timingControlp()) {
++m_ctx.m_nonRepTiming;
return false;
}
return convertEquation(nodep->fileline(), nodep->lhsp(), nodep->rhsp());
}
// Convert special simple form Always block into DFG.
// Returns true on success, false if not representable/not simple.
bool convertSimpleAlways(AstAlways* nodep) {
// Only consider single statement block
if (!nodep->isJustOneBodyStmt()) return false;
AstNode* const stmtp = nodep->stmtsp();
if (AstAssign* const assignp = VN_CAST(stmtp, Assign)) {
return convertNodeAssign(assignp);
}
if (AstIf* const ifp = VN_CAST(stmtp, If)) {
// Will only handle single assignments to the same LHS in both branches
AstAssign* const thenp = VN_CAST(ifp->thensp(), Assign);
AstAssign* const elsep = VN_CAST(ifp->elsesp(), Assign);
if (!thenp || !elsep || thenp->nextp() || elsep->nextp()
|| !thenp->lhsp()->sameTree(elsep->lhsp())) {
return false;
}
++m_ctx.m_inputEquations;
if (thenp->timingControlp() || elsep->timingControlp()) {
++m_ctx.m_nonRepTiming;
return false;
}
// Create a conditional for the rhs by borrowing the components from the AstIf
AstCond* const rhsp = new AstCond{ifp->fileline(), //
ifp->condp()->unlinkFrBack(), //
thenp->rhsp()->unlinkFrBack(), //
elsep->rhsp()->unlinkFrBack()};
const bool success = convertEquation(ifp->fileline(), thenp->lhsp(), rhsp);
// Put the AstIf back together
ifp->condp(rhsp->condp()->unlinkFrBack());
thenp->rhsp(rhsp->thenp()->unlinkFrBack());
elsep->rhsp(rhsp->elsep()->unlinkFrBack());
// Delete the auxiliary conditional
VL_DO_DANGLING(rhsp->deleteTree(), rhsp);
return success;
}
return false;
}
// VISITORS
// Unhandled node
void visit(AstNode* nodep) override {
if (!m_foundUnhandled && m_converting) ++m_ctx.m_nonRepUnknown;
m_foundUnhandled = true;
}
// Expressions - mostly auto generated, but a few special ones
void visit(AstVarRef* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
// This visit method is only called on RValues, where only read refs are supportes
if (!nodep->access().isReadOnly() || !isSupported(nodep)) {
m_foundUnhandled = true;
++m_ctx.m_nonRepVarRef;
return;
}
nodep->user2p(getNet(getTarget(nodep)));
}
void visit(AstConst* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
DfgVertex* const vtxp = new DfgConst{m_dfg, nodep->fileline(), nodep->num()};
nodep->user2p(vtxp);
}
void visit(AstSel* nodep) override {
UASSERT_OBJ(m_converting, nodep, "AstToDfg visit called without m_converting");
UASSERT_OBJ(!nodep->user2p(), nodep, "Already has Dfg vertex");
if (unhandled(nodep)) return;
iterate(nodep->fromp());
if (m_foundUnhandled) return;
FileLine* const flp = nodep->fileline();
DfgVertex* vtxp = nullptr;
if (AstConst* const constp = VN_CAST(nodep->lsbp(), Const)) {
DfgSel* const selp = new DfgSel{m_dfg, flp, DfgVertex::dtypeFor(nodep)};
selp->fromp(nodep->fromp()->user2u().to<DfgVertex*>());
selp->lsb(constp->toUInt());
vtxp = selp;
} else {
iterate(nodep->lsbp());
if (m_foundUnhandled) return;
DfgMux* const muxp = new DfgMux{m_dfg, flp, DfgVertex::dtypeFor(nodep)};
muxp->fromp(nodep->fromp()->user2u().to<DfgVertex*>());
muxp->lsbp(nodep->lsbp()->user2u().to<DfgVertex*>());
vtxp = muxp;
}
nodep->user2p(vtxp);
}
// The rest of the visit methods for expressions are generated by 'astgen'
#include "V3Dfg__gen_ast_to_dfg.h"
public:
// PUBLIC METHODS
// Convert AstAssignW to Dfg, return true if successful.
bool convert(AstAssignW* nodep) {
if (convertNodeAssign(nodep)) {
// Remove node from Ast. Now represented by the Dfg.
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return true;
}
return false;
}
// Convert AstAlways to Dfg, return true if successful.
bool convert(AstAlways* nodep) {
// Ignore sequential logic
const VAlwaysKwd kwd = nodep->keyword();
if (nodep->sensesp() || (kwd != VAlwaysKwd::ALWAYS && kwd != VAlwaysKwd::ALWAYS_COMB)) {
return false;
}
// Attemp to convert special forms
if (convertSimpleAlways(nodep)) {
// Remove node from Ast. Now represented by the Dfg.
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return true;
}
return false;
}
// CONSTRUCTOR
AstToDfgConverter(DfgGraph& dfg, V3DfgAstToDfgContext& ctx)
: m_dfg{dfg}
, m_ctx{ctx} {}
};
// Resolves multiple drivers (keep only the first one),
// and ensures drivers are stored in ascending index order
class AstToDfgNormalizeDrivers final {
// TYPES
struct Driver final {
FileLine* m_flp; // Location of driver in source
uint32_t m_low; // Low index of driven range
DfgVertex* m_vtxp; // Driving vertex
Driver() = delete;
Driver(FileLine* flp, uint32_t low, DfgVertex* vtxp)
: m_flp{flp}
, m_low{low}
, m_vtxp{vtxp} {}
};
// STATE
DfgGraph& m_dfg; // The graph being processed
DfgVertexVar& m_var; // The variable being normalzied
// METHODS
// Normalize packed driver
void normalizePacked(const std::string& sub, DfgSplicePacked* const splicep) {
UASSERT_OBJ(splicep->arity() >= 1, splicep, "Undriven DfgSplicePacked");
// The drivers of 'splicep'
std::vector<Driver> drivers;
drivers.reserve(splicep->arity());
// Sometime assignment ranges are coalesced by V3Const,
// so we unpack concatenations for better error reporting.
const std::function<void(FileLine*, uint32_t, DfgVertex*)> gather
= [&](FileLine* flp, uint32_t lsb, DfgVertex* vtxp) -> void {
if (DfgConcat* const concatp = vtxp->cast<DfgConcat>()) {
DfgVertex* const rhsp = concatp->rhsp();
auto const rhs_width = rhsp->width();
gather(rhsp->fileline(), lsb, rhsp);
DfgVertex* const lhsp = concatp->lhsp();
gather(lhsp->fileline(), lsb + rhs_width, lhsp);
concatp->unlinkDelete(m_dfg);
} else {
drivers.emplace_back(flp, lsb, vtxp);
}
};
// Gather and unlink all drivers
splicep->forEachSourceEdge([&](DfgEdge& edge, size_t i) {
DfgVertex* const driverp = edge.sourcep();
UASSERT(driverp, "Should not have created undriven sources");
UASSERT_OBJ(!driverp->is<DfgVertexSplice>(), splicep, "Should not be DfgVertexSplice");
gather(splicep->driverFileLine(i), splicep->driverLsb(i), driverp);
edge.unlinkSource();
});
splicep->resetSources();
const auto cmp = [](const Driver& a, const Driver& b) {
if (a.m_low != b.m_low) return a.m_low < b.m_low;
return a.m_flp->operatorCompare(*b.m_flp) < 0;
};
// Sort drivers by LSB
std::stable_sort(drivers.begin(), drivers.end(), cmp);
// Fix multiply driven ranges
for (auto it = drivers.begin(); it != drivers.end();) {
Driver& a = *it++;
const uint32_t aWidth = a.m_vtxp->width();
const uint32_t aEnd = a.m_low + aWidth;
while (it != drivers.end()) {
Driver& b = *it;
// If no overlap, then nothing to do
if (b.m_low >= aEnd) break;
const uint32_t bWidth = b.m_vtxp->width();
const uint32_t bEnd = b.m_low + bWidth;
const uint32_t overlapEnd = std::min(aEnd, bEnd) - 1;
// Loop index often abused, so suppress
if (!m_var.varp()->isUsedLoopIdx()) {
AstNode* const nodep = m_var.nodep();
nodep->v3warn( //
MULTIDRIVEN,
"Bits [" //
<< overlapEnd << ":" << b.m_low << "] of signal '"
<< nodep->prettyName() << sub
<< "' have multiple combinational drivers\n"
<< a.m_flp->warnOther() << "... Location of first driver\n"
<< a.m_flp->warnContextPrimary() << '\n'
<< b.m_flp->warnOther() << "... Location of other driver\n"
<< b.m_flp->warnContextSecondary() << nodep->warnOther()
<< "... Only the first driver will be respected");
}
// If the first driver completely covers the range of the second driver,
// we can just delete the second driver completely, otherwise adjust the
// second driver to apply from the end of the range of the first driver.
if (aEnd >= bEnd) {
it = drivers.erase(it);
} else {
const auto dtypep = DfgVertex::dtypeForWidth(bEnd - aEnd);
DfgSel* const selp = new DfgSel{m_dfg, b.m_vtxp->fileline(), dtypep};
selp->fromp(b.m_vtxp);
selp->lsb(aEnd - b.m_low);
b.m_low = aEnd;
b.m_vtxp = selp;
std::stable_sort(it, drivers.end(), cmp);
}
}
}
// Reinsert drivers in order
for (const Driver& d : drivers) splicep->addDriver(d.m_flp, d.m_low, d.m_vtxp);
}
// Normalize array driver
void normalizeArray(const std::string& sub, DfgSpliceArray* const splicep) {
UASSERT_OBJ(splicep->arity() >= 1, splicep, "Undriven DfgSpliceArray");
// The drivers of 'splicep'
std::vector<Driver> drivers;
drivers.reserve(splicep->arity());
// Normalize, gather, and unlink all drivers
splicep->forEachSourceEdge([&](DfgEdge& edge, size_t i) {
DfgVertex* const driverp = edge.sourcep();
UASSERT(driverp, "Should not have created undriven sources");
const uint32_t idx = splicep->driverIndex(i);
// Normalize
if (DfgSplicePacked* const splicePackedp = driverp->cast<DfgSplicePacked>()) {
normalizePacked(sub + "[" + std::to_string(idx) + "]", splicePackedp);
} else if (DfgSpliceArray* const spliceArrayp = driverp->cast<DfgSpliceArray>()) {
normalizeArray(sub + "[" + std::to_string(idx) + "]", spliceArrayp);
} else if (driverp->is<DfgVertexSplice>()) {
driverp->v3fatalSrc("Unhandled DfgVertexSplice sub-type"); // LCOV_EXCL_LINE
}
// Gather
drivers.emplace_back(splicep->driverFileLine(i), idx, driverp);
// Unlink
edge.unlinkSource();
});
splicep->resetSources();
const auto cmp = [](const Driver& a, const Driver& b) {
if (a.m_low != b.m_low) return a.m_low < b.m_low;
return a.m_flp->operatorCompare(*b.m_flp) < 0;
};
// Sort drivers by index
std::stable_sort(drivers.begin(), drivers.end(), cmp);
// Fix multiply driven ranges
for (auto it = drivers.begin(); it != drivers.end();) {
Driver& a = *it++;
AstUnpackArrayDType* aArrayDTypep = VN_CAST(a.m_vtxp->dtypep(), UnpackArrayDType);
const uint32_t aElements = aArrayDTypep ? aArrayDTypep->elementsConst() : 1;
const uint32_t aEnd = a.m_low + aElements;
while (it != drivers.end()) {
Driver& b = *it;
// If no overlap, then nothing to do
if (b.m_low >= aEnd) break;
AstUnpackArrayDType* bArrayDTypep = VN_CAST(b.m_vtxp->dtypep(), UnpackArrayDType);
const uint32_t bElements = bArrayDTypep ? bArrayDTypep->elementsConst() : 1;
const uint32_t bEnd = b.m_low + bElements;
const uint32_t overlapEnd = std::min(aEnd, bEnd) - 1;
AstNode* const nodep = m_var.nodep();
nodep->v3warn( //
MULTIDRIVEN,
"Elements [" //
<< overlapEnd << ":" << b.m_low << "] of signal '" << nodep->prettyName()
<< sub << "' have multiple combinational drivers\n"
<< a.m_flp->warnOther() << "... Location of first driver\n"
<< a.m_flp->warnContextPrimary() << '\n'
<< b.m_flp->warnOther() << "... Location of other driver\n"
<< b.m_flp->warnContextSecondary() << nodep->warnOther()
<< "... Only the first driver will be respected");
// If the first driver completely covers the range of the second driver,
// we can just delete the second driver completely, otherwise adjust the
// second driver to apply from the end of the range of the first driver.
if (aEnd >= bEnd) {
it = drivers.erase(it);
} else {
const auto distance = std::distance(drivers.begin(), it);
DfgVertex* const bVtxp = b.m_vtxp;
FileLine* const flp = b.m_vtxp->fileline();
AstNodeDType* const elemDtypep = DfgVertex::dtypeFor(
VN_AS(splicep->dtypep(), UnpackArrayDType)->subDTypep());
// Remove this driver
it = drivers.erase(it);
// Add missing items element-wise
for (uint32_t i = aEnd; i < bEnd; ++i) {
DfgArraySel* const aselp = new DfgArraySel{m_dfg, flp, elemDtypep};
aselp->fromp(bVtxp);
aselp->bitp(new DfgConst{m_dfg, flp, 32, i});
drivers.emplace_back(flp, i, aselp);
}
it = drivers.begin();
std::advance(it, distance);
std::stable_sort(it, drivers.end(), cmp);
}
}
}
// Reinsert drivers in order
for (const Driver& d : drivers) splicep->addDriver(d.m_flp, d.m_low, d.m_vtxp);
}
// CONSTRUCTOR
AstToDfgNormalizeDrivers(DfgGraph& dfg, DfgVertexVar& var)
: m_dfg{dfg}
, m_var{var} {
// Nothing to do for un-driven (input) variables
if (!var.srcp()) return;
// The driver of a variable must always be a splice vertex, normalize it
if (DfgSpliceArray* const sArrayp = var.srcp()->cast<DfgSpliceArray>()) {
normalizeArray("", sArrayp);
} else if (DfgSplicePacked* const sPackedp = var.srcp()->cast<DfgSplicePacked>()) {
normalizePacked("", sPackedp);
} else {
var.v3fatalSrc("Unhandled DfgVertexSplice sub-type"); // LCOV_EXCL_LINE
}
}
public:
// Normalize drivers of given variable
static void apply(DfgGraph& dfg, DfgVertexVar& var) { AstToDfgNormalizeDrivers{dfg, var}; }
};
// Coalesce contiguous driver ranges,
// and remove redundant splice vertices (when the variable is driven whole)
class AstToDfgCoalesceDrivers final {
// TYPES
struct Driver final {
FileLine* m_flp; // Location of driver in source
uint32_t m_low; // Low index of driven range
DfgVertex* m_vtxp; // Driving vertex
Driver() = delete;
Driver(FileLine* flp, uint32_t low, DfgVertex* vtxp)
: m_flp{flp}
, m_low{low}
, m_vtxp{vtxp} {}
};
// STATE
DfgGraph& m_dfg; // The graph being processed
V3DfgAstToDfgContext& m_ctx; // The context for stats
// METHODS
// Coalesce packed driver - return the coalesced vertex and location for 'splicep'
std::pair<DfgVertex*, FileLine*> coalescePacked(DfgSplicePacked* const splicep) {
UASSERT_OBJ(splicep->arity() >= 1, splicep, "Undriven DfgSplicePacked");
// The drivers of 'splicep'
std::vector<Driver> drivers;
drivers.reserve(splicep->arity());
// Gather and unlink all drivers
int64_t prevHigh = -1; // High index of previous driven range
splicep->forEachSourceEdge([&](DfgEdge& edge, size_t i) {
DfgVertex* const driverp = edge.sourcep();
UASSERT_OBJ(driverp, splicep, "Should not have created undriven sources");
UASSERT_OBJ(!driverp->is<DfgVertexSplice>(), splicep, "Should not be DfgVertexSplice");
const uint32_t low = splicep->driverLsb(i);
UASSERT_OBJ(static_cast<int64_t>(low) > prevHigh, splicep,
"Drivers should have been normalized");
prevHigh = low + driverp->width() - 1;
// Gather
drivers.emplace_back(splicep->driverFileLine(i), low, driverp);
// Unlink
edge.unlinkSource();
});
splicep->resetSources();
// Coalesce adjacent ranges
if (drivers.size() > 1) {
size_t mergeInto = 0;
size_t mergeFrom = 1;
do {
Driver& into = drivers[mergeInto];
Driver& from = drivers[mergeFrom];
const uint32_t intoWidth = into.m_vtxp->width();
const uint32_t fromWidth = from.m_vtxp->width();
if (into.m_low + intoWidth == from.m_low) {
// Adjacent ranges, coalesce
const auto dtypep = DfgVertex::dtypeForWidth(intoWidth + fromWidth);
DfgConcat* const concatp = new DfgConcat{m_dfg, into.m_flp, dtypep};
concatp->rhsp(into.m_vtxp);
concatp->lhsp(from.m_vtxp);
into.m_vtxp = concatp;
from.m_vtxp = nullptr; // Mark as moved
++m_ctx.m_coalescedAssignments;
} else {
// There is a gap - future merges go into the next position
++mergeInto;
// Move 'from' into the next position, unless it's already there
if (mergeFrom != mergeInto) {
Driver& next = drivers[mergeInto];
UASSERT_OBJ(!next.m_vtxp, next.m_flp, "Should have been marked moved");
next = from;
from.m_vtxp = nullptr; // Mark as moved
}
}
// Consider next driver
++mergeFrom;
} while (mergeFrom < drivers.size());
// Rightsize vector
drivers.erase(drivers.begin() + (mergeInto + 1), drivers.end());
}
// If the variable is driven whole, we can just use that driver
if (drivers.size() == 1 //
&& drivers[0].m_low == 0 //
&& drivers[0].m_vtxp->width() == splicep->width()) {
VL_DO_DANGLING(splicep->unlinkDelete(m_dfg), splicep);
// Use the driver directly
return {drivers[0].m_vtxp, drivers[0].m_flp};
}
// Reinsert drivers in order
for (const Driver& d : drivers) splicep->addDriver(d.m_flp, d.m_low, d.m_vtxp);
// Use the original splice
return {splicep, splicep->fileline()};
}
// Coalesce array driver - return the coalesced vertex and location for 'splicep'
std::pair<DfgVertex*, FileLine*> coalesceArray(DfgSpliceArray* const splicep) {
UASSERT_OBJ(splicep->arity() >= 1, splicep, "Undriven DfgSpliceArray");
// The drivers of 'splicep'
std::vector<Driver> drivers;
drivers.reserve(splicep->arity());
// Coalesce, gather and unlink all drivers
int64_t prevHigh = -1; // High index of previous driven range
splicep->forEachSourceEdge([&](DfgEdge& edge, size_t i) {
DfgVertex* driverp = edge.sourcep();
UASSERT_OBJ(driverp, splicep, "Should not have created undriven sources");
const uint32_t low = splicep->driverIndex(i);
UASSERT_OBJ(static_cast<int64_t>(low) > prevHigh, splicep,
"Drivers should have been normalized");
prevHigh = low;
FileLine* flp = splicep->driverFileLine(i);
// Coalesce
if (DfgSplicePacked* const spp = driverp->cast<DfgSplicePacked>()) {
std::tie(driverp, flp) = coalescePacked(spp);
} else if (DfgSpliceArray* const sap = driverp->cast<DfgSpliceArray>()) {
std::tie(driverp, flp) = coalesceArray(sap);
} else if (driverp->is<DfgVertexSplice>()) {
driverp->v3fatalSrc("Unhandled DfgVertexSplice sub-type"); // LCOV_EXCL_LINE
}
// Gather
drivers.emplace_back(flp, low, driverp);
// Unlink
edge.unlinkSource();
});
splicep->resetSources();
// If the variable is driven whole, we can just use that driver
if (drivers.size() == 1 //
&& drivers[0].m_low == 0 //
&& drivers[0].m_vtxp->dtypep()->isSame(splicep->dtypep())) {
VL_DO_DANGLING(splicep->unlinkDelete(m_dfg), splicep);
// Use the driver directly
return {drivers[0].m_vtxp, drivers[0].m_flp};
}
// Reinsert drivers in order
for (const Driver& d : drivers) splicep->addDriver(d.m_flp, d.m_low, d.m_vtxp);
// Use the original splice
return {splicep, splicep->fileline()};
}
// CONSTRUCTOR
AstToDfgCoalesceDrivers(DfgGraph& dfg, DfgVertexVar& var, V3DfgAstToDfgContext& ctx)
: m_dfg{dfg}
, m_ctx{ctx} {
// Nothing to do for un-driven (input) variables
if (!var.srcp()) return;
// The driver of a variable must always be a splice vertex, coalesce it
std::pair<DfgVertex*, FileLine*> normalizedDriver;
if (DfgSpliceArray* const sArrayp = var.srcp()->cast<DfgSpliceArray>()) {
normalizedDriver = coalesceArray(sArrayp);
} else if (DfgSplicePacked* const sPackedp = var.srcp()->cast<DfgSplicePacked>()) {
normalizedDriver = coalescePacked(sPackedp);
} else {
var.v3fatalSrc("Unhandled DfgVertexSplice sub-type"); // LCOV_EXCL_LINE
}
var.srcp(normalizedDriver.first);
var.driverFileLine(normalizedDriver.second);
}
public:
// Coalesce drivers of given variable
static void apply(DfgGraph& dfg, DfgVertexVar& var, V3DfgAstToDfgContext& ctx) {
AstToDfgCoalesceDrivers{dfg, var, ctx};
}
};
// Visitor that converts a whole module (when T_Scoped is false),
// or the whole netlist (when T_Scoped is true).
template <bool T_Scoped>
class AstToDfgVisitor final : public VNVisitor {
// NODE STATE
const VNUser2InUse m_user2InUse; // Used by AstToDfgConverter
// TYPES
using RootType = std::conditional_t<T_Scoped, AstNetlist, AstModule>;
using Variable = std::conditional_t<T_Scoped, AstVarScope, AstVar>;
// STATE
AstToDfgConverter<T_Scoped> m_converter; // The convert instance to use for each construct
// METHODS
static Variable* getTarget(const AstVarRef* refp) {
// TODO: remove the useless reinterpret_casts when C++17 'if constexpr' actually works
if VL_CONSTEXPR_CXX17 (T_Scoped) {
return reinterpret_cast<Variable*>(refp->varScopep());
} else {
return reinterpret_cast<Variable*>(refp->varp());
}
}
// Mark variables referenced under node
static void markReferenced(AstNode* nodep) {
nodep->foreach([](const AstVarRef* refp) {
Variable* const tgtp = getTarget(refp);
// Mark as read from non-DFG logic
if (refp->access().isReadOrRW()) DfgVertexVar::setHasModRdRefs(tgtp);
// Mark as written from non-DFG logic
if (refp->access().isWriteOrRW()) DfgVertexVar::setHasModWrRefs(tgtp);
});
}
// VISITORS
// Unhandled node
void visit(AstNode* nodep) override { markReferenced(nodep); }
// Containers to descend through to find logic constructs
void visit(AstNetlist* nodep) override { iterateAndNextNull(nodep->modulesp()); }
void visit(AstModule* nodep) override { iterateAndNextNull(nodep->stmtsp()); }
void visit(AstTopScope* nodep) override { iterate(nodep->scopep()); }
void visit(AstScope* nodep) override { iterateChildren(nodep); }
void visit(AstActive* nodep) override {
if (nodep->hasCombo()) {
iterateChildren(nodep);
} else {
markReferenced(nodep);
}
}
// Non-representable constructs
void visit(AstCell* nodep) override { markReferenced(nodep); }
void visit(AstNodeProcedure* nodep) override { markReferenced(nodep); }
// Potentially representable constructs
void visit(AstAssignW* nodep) override {
if (!m_converter.convert(nodep)) markReferenced(nodep);
}
void visit(AstAlways* nodep) override {
if (!m_converter.convert(nodep)) markReferenced(nodep);
}
// CONSTRUCTOR
AstToDfgVisitor(DfgGraph& dfg, RootType& root, V3DfgAstToDfgContext& ctx)
: m_converter{dfg, ctx} {
iterate(&root);
}
public:
static void apply(DfgGraph& dfg, RootType& root, V3DfgAstToDfgContext& ctx) {
// Convert all logic under 'root'
AstToDfgVisitor{dfg, root, ctx};
if (dumpDfgLevel() >= 9) dfg.dumpDotFilePrefixed(ctx.prefix() + "ast2dfg-conv");
// Normalize and coalesce all variable drivers
for (DfgVertexVar& var : dfg.varVertices()) {
AstToDfgNormalizeDrivers::apply(dfg, var);
AstToDfgCoalesceDrivers::apply(dfg, var, ctx);
}
if (dumpDfgLevel() >= 9) dfg.dumpDotFilePrefixed(ctx.prefix() + "ast2dfg-norm");
// Remove all unused vertices
V3DfgPasses::removeUnused(dfg);
if (dumpDfgLevel() >= 9) dfg.dumpDotFilePrefixed(ctx.prefix() + "ast2dfg-prun");
}
};
std::unique_ptr<DfgGraph> V3DfgPasses::astToDfg(AstModule& module, V3DfgContext& ctx) {
DfgGraph* const dfgp = new DfgGraph{&module, module.name()};
AstToDfgVisitor</* T_Scoped: */ false>::apply(*dfgp, module, ctx.m_ast2DfgContext);
return std::unique_ptr<DfgGraph>{dfgp};
}
std::unique_ptr<DfgGraph> V3DfgPasses::astToDfg(AstNetlist& netlist, V3DfgContext& ctx) {
DfgGraph* const dfgp = new DfgGraph{nullptr, "netlist"};
AstToDfgVisitor</* T_Scoped: */ true>::apply(*dfgp, netlist, ctx.m_ast2DfgContext);
return std::unique_ptr<DfgGraph>{dfgp};
}