verilator/src/V3ExecGraph.cpp

1227 lines
56 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: AstExecGraph code construction
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3ExecGraph.h"
#include "V3Control.h"
#include "V3EmitCBase.h"
#include "V3File.h"
#include "V3GraphStream.h"
#include "V3Hasher.h"
#include "V3InstrCount.h"
#include "V3Os.h"
#include "V3Stats.h"
#include <memory>
#include <unordered_map>
#include <vector>
VL_DEFINE_DEBUG_FUNCTIONS;
AstCFunc* ExecMTask::createCFunc(AstExecGraph* execGraphp, AstScope* scopep, AstNodeStmt* stmtsp,
uint32_t id) {
const std::string newName = execGraphp->name() + "_mtask" + std::to_string(id);
AstCFunc* const newp = new AstCFunc{execGraphp->fileline(), newName, scopep};
newp->isLoose(true);
newp->dontCombine(true);
newp->addStmtsp(stmtsp);
if (scopep) scopep->addBlocksp(newp);
return newp;
}
ExecMTask::ExecMTask(AstExecGraph* execGraphp, AstScope* scopep,
AstNodeStmt* stmtsp) VL_MT_DISABLED //
: V3GraphVertex{execGraphp->depGraphp()},
m_id{s_nextId++},
m_funcp{createCFunc(execGraphp, scopep, stmtsp, m_id)},
m_hashName{V3Hasher::uncachedHash(m_funcp).toString()} {}
void ExecMTask::dump(std::ostream& str) const {
str << name() << "." << cvtToHex(this);
if (priority() || cost()) str << " [pr=" << priority() << " c=" << cvtToStr(cost()) << "]";
}
std::atomic<uint32_t> ExecMTask::s_nextId{0};
namespace V3ExecGraph {
//######################################################################
// ThreadSchedule
// The thread schedule, containing all information needed later. Note that this is a simple
// aggregate data type and the only way to get hold of an instance of it is via
// PackThreads::pack, which is moved from there and is const, which means we can only acquire a
// const reference to is so no further modifications are allowed, so all members are public
// (attributes).
class ThreadSchedule final {
friend class PackThreads;
uint32_t m_id; // Unique ID of a schedule
static uint32_t s_nextId; // Next ID number to use
std::unordered_set<const ExecMTask*> mtasks; // Mtasks in this schedule
uint32_t m_endTime = 0; // Latest task end time in this schedule
public:
// CONSTANTS
static constexpr uint32_t UNASSIGNED = 0xffffffff;
// TYPES
struct MTaskState final {
uint32_t completionTime = 0; // Estimated time this mtask will complete
uint32_t threadId = UNASSIGNED; // Thread id this MTask is assigned to
const ExecMTask* nextp = nullptr; // Next MTask on same thread after this
};
// MEMBERS
// Allocation of sequence of MTasks to threads. Can be considered a map from thread ID to
// the sequence of MTasks to be executed by that thread.
std::vector<std::vector<const ExecMTask*>> m_threads;
// Global state for each mtask.
static std::unordered_map<const ExecMTask*, MTaskState> s_mtaskState;
explicit ThreadSchedule(uint32_t nThreads)
: m_id{s_nextId++}
, m_threads{nThreads} {}
ThreadSchedule(ThreadSchedule&&) = default;
ThreadSchedule& operator=(ThreadSchedule&&) = default;
private:
VL_UNCOPYABLE(ThreadSchedule);
static constexpr double s_threadBoxWidth = 2.5;
static constexpr double s_threadBoxHeight = 1.5;
static constexpr double s_horizontalGap = s_threadBoxWidth / 2;
// Debugging
// Variant of dumpDotFilePrefixed without --dump option check
static void dumpDotFilePrefixedAlways(const std::vector<ThreadSchedule>& schedules,
const string& nameComment, uint32_t nThreads) {
dumpDotFile(schedules, v3Global.debugFilename(nameComment) + ".dot", nThreads);
}
static void dumpDotFile(const std::vector<ThreadSchedule>& schedules, const string& filename,
uint32_t nThreads) {
// This generates a file used by graphviz, https://www.graphviz.org
const std::unique_ptr<std::ofstream> logp{V3File::new_ofstream(filename)};
if (logp->fail()) v3fatal("Can't write file: " << filename);
// Header
*logp << "digraph v3graph {\n";
*logp << " graph[layout=\"neato\" labelloc=t labeljust=l label=\"" << filename << "\"]\n";
*logp << " node[shape=\"rect\" ratio=\"fill\" fixedsize=true]\n";
// Thread labels
*logp << "\n // Threads\n";
for (uint32_t i = 0; i < nThreads; ++i) {
const string name = "t" + std::to_string(i);
const string label = "Thread " + std::to_string(i);
constexpr double posX = -s_horizontalGap;
const double posY = -static_cast<double>(i) * s_threadBoxHeight;
dumpDotFileEmitBlock(logp, name, label, s_threadBoxWidth, s_threadBoxHeight, posX,
posY, "grey");
}
// MTask nodes
*logp << "\n // MTasks\n";
uint32_t maxCost = 0;
for (const auto& state : ThreadSchedule::s_mtaskState) {
const ExecMTask* const mtaskp = state.first;
maxCost = std::max(maxCost, mtaskp->cost());
}
// To avoid segments getting too large, limit maximal mtask length.
// Based on the mtask cost, normalize it using segment cost
constexpr uint32_t segmentsPerLongestMtask = 4;
const uint32_t segmentCost = maxCost / segmentsPerLongestMtask;
// Create columns of tasks whose execution intervals overlaps.
// Keep offset for each column for correctly aligned tasks.
std::vector<double> offsets(nThreads, 0.0);
for (const ThreadSchedule& schedule : schedules) {
if (schedule.mtasks.empty()) continue;
using Column = std::vector<const ExecMTask*>;
std::vector<Column> columns = {{}};
// Order tasks based on their start time
struct Cmp final {
bool operator()(const ExecMTask* const a, const ExecMTask* const b) const {
if (startTime(a) == startTime(b)) return threadId(a) < threadId(b);
return startTime(a) < startTime(b);
}
};
const std::multiset<const ExecMTask*, Cmp> tasks(schedule.mtasks.begin(),
schedule.mtasks.end());
for (const ExecMTask* const mtaskp : tasks) {
Column& column = columns.back();
UASSERT(column.size() <= nThreads, "Invalid partitioning");
bool intersects = true;
for (const ExecMTask* const earlierMtask : column) {
if (endTime(mtaskp) <= startTime(earlierMtask)
|| startTime(mtaskp) >= endTime(earlierMtask)) {
intersects = false;
break;
}
}
if (intersects) {
column.emplace_back(mtaskp);
} else {
columns.emplace_back(Column{mtaskp});
}
}
UASSERT(!columns.front().empty(), "Should be populated by mtasks");
for (const Column& column : columns) {
double lastColumnOffset = 0;
for (const ExecMTask* const mtaskp : column) {
dumpDotFileEmitMTask(logp, mtaskp, schedule, segmentCost, offsets);
lastColumnOffset = std::max(lastColumnOffset, offsets[threadId(mtaskp)]);
}
// Even out column offset
std::fill(offsets.begin(), offsets.end(), lastColumnOffset);
}
dumpDotFileEmitFork(logp, offsets.front(), nThreads);
// Emit MTask dependency edges
*logp << "\n // MTask dependencies\n";
for (const std::vector<const ExecMTask*>& thread : schedule.m_threads) {
if (thread.empty()) break; // No more threads
// Show that schedule ends when all tasks are finished
*logp << " " << thread.back()->name() << " -> fork_"
<< static_cast<int>(offsets.front()) << "\n";
// Show that tasks from the same thread are executed in a sequence
for (size_t i = 1; i < thread.size(); ++i)
*logp << " " << thread[i - 1]->name() << " -> " << thread[i]->name() << "\n";
// Emit cross-task dependencies
for (const ExecMTask* const mtaskp : thread) {
for (const V3GraphEdge& edge : mtaskp->outEdges()) {
const ExecMTask* const topMTaskp = edge.top()->cast<const ExecMTask>();
if (topMTaskp && schedule.contains(topMTaskp)
&& threadId(topMTaskp) != threadId(mtaskp))
*logp << " " << mtaskp->name() << " -> " << topMTaskp->name() << "\n";
}
}
}
}
// Trailer
*logp << "}\n";
logp->close();
}
static void dumpDotFileEmitBlock(const std::unique_ptr<std::ofstream>& logp,
const string& name, const string& label, double width,
double height, double xPos, double yPos,
const string& fillColor) {
*logp << " " << name << " [label=\"" << label << "\" width=" << width
<< " height=" << height << " pos=\"" << xPos << "," << yPos
<< "!\" style=\"filled\" fillcolor=\"" << fillColor << "\"]\n";
}
static void dumpDotFileEmitMTask(const std::unique_ptr<std::ofstream>& logp,
const ExecMTask* const mtaskp, const ThreadSchedule& schedule,
uint32_t segmentCost, std::vector<double>& offsets) {
for (int i = 0; i < mtaskp->threads(); ++i) {
// Keep original name for the original thread of hierarchical task to keep
// dependency tracking, add '_' for the rest to differentiate them.
const string name = i == 0 ? mtaskp->name() : mtaskp->name() + '_' + std::to_string(i);
const string label = mtaskp->name() + " (" + std::to_string(startTime(mtaskp)) + ':'
+ std::to_string(endTime(mtaskp)) + ')'
+ "\\ncost=" + std::to_string(mtaskp->cost())
+ "\\npriority=" + std::to_string(mtaskp->priority());
const double width
= std::max(s_threadBoxWidth,
s_threadBoxWidth * static_cast<double>(mtaskp->cost()) / segmentCost);
const uint32_t mtaskThreadId = threadId(mtaskp) + i * schedule.m_threads.size();
const double xPos = width / 2 + offsets[mtaskThreadId];
offsets[mtaskThreadId] += width + s_horizontalGap;
const double yPos = -s_threadBoxHeight * static_cast<double>(mtaskThreadId);
const string fillColor = i == 0 ? "white" : "lightgreen";
dumpDotFileEmitBlock(logp, name, label, width, s_threadBoxHeight, xPos, yPos,
fillColor);
}
}
static void dumpDotFileEmitFork(const std::unique_ptr<std::ofstream>& logp, double offset,
uint32_t nThreads) {
const string& name = "fork_" + std::to_string(static_cast<int>(offset));
constexpr double width = s_threadBoxWidth / 8;
const double height = s_threadBoxHeight * nThreads;
const double xPos = offset - s_horizontalGap / 2;
const double yPos
= -static_cast<double>(nThreads) / 2 * s_threadBoxHeight + s_threadBoxHeight / 2;
dumpDotFileEmitBlock(logp, name, "", width, height, xPos, yPos, "black");
}
public:
static uint32_t threadId(const ExecMTask* mtaskp) {
const auto& it = s_mtaskState.find(mtaskp);
return it != s_mtaskState.end() ? it->second.threadId : UNASSIGNED;
}
static uint32_t startTime(const ExecMTask* mtaskp) {
return s_mtaskState.at(mtaskp).completionTime - mtaskp->cost();
}
static uint32_t endTime(const ExecMTask* mtaskp) {
return s_mtaskState.at(mtaskp).completionTime;
}
// Returns the number of cross-thread dependencies of the given MTask. If > 0, the MTask must
// test whether its dependencies are ready before starting, and therefore may need to block.
uint32_t crossThreadDependencies(const ExecMTask* mtaskp) const {
const uint32_t thisThreadId = threadId(mtaskp);
uint32_t result = 0;
for (const V3GraphEdge& edge : mtaskp->inEdges()) {
const ExecMTask* const prevp = edge.fromp()->as<ExecMTask>();
if (threadId(prevp) != thisThreadId && contains(prevp)) ++result;
}
return result;
}
uint32_t id() const { return m_id; }
uint32_t scheduleOn(const ExecMTask* mtaskp, uint32_t bestThreadId) {
mtasks.emplace(mtaskp);
const uint32_t bestEndTime = mtaskp->predictStart() + mtaskp->cost();
m_endTime = std::max(m_endTime, bestEndTime);
s_mtaskState[mtaskp].completionTime = bestEndTime;
s_mtaskState[mtaskp].threadId = bestThreadId;
// Reference to thread in schedule we are assigning this MTask to.
std::vector<const ExecMTask*>& bestThread = m_threads[bestThreadId];
if (!bestThread.empty()) s_mtaskState[bestThread.back()].nextp = mtaskp;
// Add the MTask to the schedule
bestThread.push_back(mtaskp);
return bestEndTime;
}
bool contains(const ExecMTask* mtaskp) const { return mtasks.count(mtaskp); }
uint32_t endTime() const { return m_endTime; }
};
uint32_t ThreadSchedule::s_nextId = 0;
std::unordered_map<const ExecMTask*, ThreadSchedule::MTaskState> ThreadSchedule::s_mtaskState{};
constexpr double V3ExecGraph::ThreadSchedule::s_threadBoxWidth;
//######################################################################
// PackThreads
// Statically pack tasks into threads.
//
// The simplest thing that could possibly work would be to assume that our
// predictions of task runtimes are precise, and that every thread will
// make progress at an equal rate. Simulate a single "clock", pack the
// highest priority ready task into whatever thread becomes ready earliest,
// repeating until no tasks remain.
//
// That doesn't work well, as our predictions of task runtimes have wide
// error bars (+/- 60% is typical.)
//
// So be a little more clever: let each task have a different end time,
// depending on which thread is looking. Be a little bit pessimistic when
// thread A checks the end time of an mtask running on thread B. This extra
// "padding" avoids tight "layovers" at cross-thread dependencies.
class PackThreads final {
// TYPES
struct MTaskCmp final {
bool operator()(const ExecMTask* ap, const ExecMTask* bp) const {
return ap->id() < bp->id();
}
};
// MEMBERS
const uint32_t m_nThreads; // Number of threads
const uint32_t m_nHierThreads; // Number of threads used for hierarchical tasks
const uint32_t m_sandbagNumerator; // Numerator padding for est runtime
const uint32_t m_sandbagDenom; // Denominator padding for est runtime
// CONSTRUCTORS
explicit PackThreads(uint32_t nThreads = v3Global.opt.threads(),
uint32_t nHierThreads = v3Global.opt.hierThreads(),
unsigned sandbagNumerator = 30, unsigned sandbagDenom = 100)
: m_nThreads{nThreads}
, m_nHierThreads{nHierThreads}
, m_sandbagNumerator{sandbagNumerator}
, m_sandbagDenom{sandbagDenom} {}
~PackThreads() = default;
VL_UNCOPYABLE(PackThreads);
// METHODS
uint32_t completionTime(const ThreadSchedule& schedule, const ExecMTask* mtaskp,
uint32_t threadId) {
// Ignore tasks that were scheduled on a different schedule
if (!schedule.contains(mtaskp)) return 0;
const ThreadSchedule::MTaskState& state = schedule.s_mtaskState.at(mtaskp);
UASSERT(state.threadId != ThreadSchedule::UNASSIGNED, "Mtask should have assigned thread");
if (threadId == state.threadId) {
// No overhead on same thread
return state.completionTime;
}
// Add some padding to the estimated runtime when looking from
// another thread
uint32_t sandbaggedEndTime
= state.completionTime + (m_sandbagNumerator * mtaskp->cost()) / m_sandbagDenom;
// If task B is packed after task A on thread 0, don't let thread 1
// think that A finishes earlier than thread 0 thinks that B
// finishes, otherwise we get priority inversions and fail the self
// test.
if (state.nextp) {
const uint32_t successorEndTime
= completionTime(schedule, state.nextp, state.threadId);
if ((sandbaggedEndTime >= successorEndTime) && (successorEndTime > 1)) {
sandbaggedEndTime = successorEndTime - 1;
}
}
UINFO(6, "Sandbagged end time for " << mtaskp->name() << " on th " << threadId << " = "
<< sandbaggedEndTime);
return sandbaggedEndTime;
}
static bool isReady(ThreadSchedule& schedule, const ExecMTask* mtaskp) {
for (const V3GraphEdge& edgeIn : mtaskp->inEdges()) {
const ExecMTask* const prevp = edgeIn.fromp()->as<const ExecMTask>();
if (schedule.threadId(prevp) == ThreadSchedule::UNASSIGNED) {
// This predecessor is not assigned yet
return false;
}
}
return true;
}
// Pack an MTasks from given graph into m_nThreads threads, return the schedule.
std::vector<ThreadSchedule> pack(V3Graph& mtaskGraph) {
std::vector<ThreadSchedule> result;
result.emplace_back(ThreadSchedule{m_nThreads});
// To support scheduling tasks that utilize more than one thread, we introduce a wide
// task (ExecMTask with threads() > 1). Those tasks are scheduled on a separate thread
// schedule to ensure that indexes for simulation-time thread pool workers are not shadowed
// by another tasks.
// For retaining control over thread schedules, we distinguish SchedulingModes:
enum class SchedulingMode {
SCHEDULING // Schedule normal tasks
,
WIDE_TASK_DISCOVERED // We found a wide task, if this is the only one available,
// switch to WIDE_TASK_SCHEDULING
,
WIDE_TASK_SCHEDULING // Schedule wide tasks
};
SchedulingMode mode = SchedulingMode::SCHEDULING;
// Time each thread is occupied until
std::vector<uint32_t> busyUntil(std::max(m_nThreads, m_nHierThreads), 0);
// MTasks ready to be assigned next. All their dependencies are already assigned.
std::set<ExecMTask*, MTaskCmp> readyMTasks;
int maxThreadWorkers = 1;
// Build initial ready list
for (V3GraphVertex& vtx : mtaskGraph.vertices()) {
ExecMTask* const mtaskp = vtx.as<ExecMTask>();
if (isReady(result.back(), mtaskp)) readyMTasks.insert(mtaskp);
// TODO right now we schedule tasks assuming they take the same number of threads for
// simplification.
maxThreadWorkers = std::max(maxThreadWorkers, mtaskp->threads());
}
while (!readyMTasks.empty()) {
// For each task in the ready set, compute when it might start
// on each thread (in that thread's local time frame.)
uint32_t bestTime = 0xffffffff;
uint32_t bestThreadId = 0;
ExecMTask* bestMtaskp = nullptr; // Todo: const ExecMTask*
ThreadSchedule& schedule = result.back();
for (uint32_t threadId = 0; threadId < schedule.m_threads.size(); ++threadId) {
for (ExecMTask* const mtaskp : readyMTasks) {
if (mode != SchedulingMode::WIDE_TASK_SCHEDULING && mtaskp->threads() > 1) {
mode = SchedulingMode::WIDE_TASK_DISCOVERED;
continue;
}
if (mode == SchedulingMode::WIDE_TASK_SCHEDULING && mtaskp->threads() <= 1)
continue;
uint32_t timeBegin = busyUntil[threadId];
if (timeBegin > bestTime) {
UINFO(6, "th " << threadId << " busy until " << timeBegin
<< ", later than bestTime " << bestTime
<< ", skipping thread.");
break;
}
for (const V3GraphEdge& edge : mtaskp->inEdges()) {
const ExecMTask* const priorp = edge.fromp()->as<ExecMTask>();
const uint32_t priorEndTime = completionTime(schedule, priorp, threadId);
if (priorEndTime > timeBegin) timeBegin = priorEndTime;
}
UINFO(6, "Task " << mtaskp->name() << " start at " << timeBegin
<< " on thread " << threadId);
if ((timeBegin < bestTime)
|| ((timeBegin == bestTime)
&& bestMtaskp // Redundant, but appeases static analysis tools
&& (mtaskp->priority() > bestMtaskp->priority()))) {
bestTime = timeBegin;
bestThreadId = threadId;
bestMtaskp = mtaskp;
}
}
}
const uint32_t endTime = schedule.endTime();
if (!bestMtaskp && mode == SchedulingMode::WIDE_TASK_DISCOVERED) {
mode = SchedulingMode::WIDE_TASK_SCHEDULING;
const uint32_t size = m_nHierThreads / maxThreadWorkers;
UASSERT(size, "Thread pool size should be bigger than 0");
// If no tasks were added to the normal thread schedule, clear it.
if (schedule.s_mtaskState.empty()) result.clear();
result.emplace_back(ThreadSchedule{size});
std::fill(busyUntil.begin(), busyUntil.end(), endTime);
continue;
}
if (!bestMtaskp && mode == SchedulingMode::WIDE_TASK_SCHEDULING) {
mode = SchedulingMode::SCHEDULING;
UASSERT(!schedule.s_mtaskState.empty(), "Mtask should be added");
result.emplace_back(ThreadSchedule{m_nThreads});
std::fill(busyUntil.begin(), busyUntil.end(), endTime);
continue;
}
UASSERT(bestMtaskp, "Should have found some task");
bestMtaskp->predictStart(bestTime);
const uint32_t bestEndTime = schedule.scheduleOn(bestMtaskp, bestThreadId);
busyUntil[bestThreadId] = bestEndTime;
// Update the ready list
const size_t erased = readyMTasks.erase(bestMtaskp);
UASSERT_OBJ(erased > 0, bestMtaskp, "Should have erased something?");
for (V3GraphEdge& edgeOut : bestMtaskp->outEdges()) {
ExecMTask* const nextp = edgeOut.top()->as<ExecMTask>();
// Dependent MTask should not yet be assigned to a thread
UASSERT(schedule.threadId(nextp) == ThreadSchedule::UNASSIGNED,
"Tasks after one being assigned should not be assigned yet");
// Dependent MTask should not be ready yet, since dependency is just being assigned
UASSERT_OBJ(readyMTasks.find(nextp) == readyMTasks.end(), nextp,
"Tasks after one being assigned should not be ready");
if (isReady(schedule, nextp)) {
readyMTasks.insert(nextp);
UINFO(6, "Inserted " << nextp->name() << " into ready");
}
}
}
// All schedules are combined on a single graph
if (dumpGraphLevel() >= 4)
ThreadSchedule::dumpDotFilePrefixedAlways(result, "schedule", m_nThreads);
return result;
}
public:
// SELF TEST
static void selfTest() {
selfTestHierFirst();
selfTestNormalFirst();
}
static void selfTestNormalFirst() {
FileLine* const flp = v3Global.rootp()->fileline();
AstExecGraph* const execGraphp = new AstExecGraph{flp, "test"};
V3Graph& graph = *execGraphp->depGraphp();
const auto makeBody = [&]() -> AstNodeStmt* { return new AstComment{flp, ""}; };
ExecMTask* const t0 = new ExecMTask{execGraphp, nullptr, makeBody()};
t0->cost(1000);
t0->priority(1100);
ExecMTask* const t1 = new ExecMTask{execGraphp, nullptr, makeBody()};
t1->cost(100);
t1->priority(100);
ExecMTask* const t2 = new ExecMTask{execGraphp, nullptr, makeBody()};
t2->cost(100);
t2->priority(100);
t2->threads(2);
ExecMTask* const t3 = new ExecMTask{execGraphp, nullptr, makeBody()};
t3->cost(100);
t3->priority(100);
t3->threads(3);
ExecMTask* const t4 = new ExecMTask{execGraphp, nullptr, makeBody()};
t4->cost(100);
t4->priority(100);
t4->threads(3);
ExecMTask* const t5 = new ExecMTask{execGraphp, nullptr, makeBody()};
t5->cost(100);
t5->priority(100);
ExecMTask* const t6 = new ExecMTask{execGraphp, nullptr, makeBody()};
t6->cost(100);
t6->priority(100);
/*
0
/ \
1 2
/ \
3 4
/ \
5 6
*/
new V3GraphEdge{&graph, t0, t1, 1};
new V3GraphEdge{&graph, t0, t2, 1};
new V3GraphEdge{&graph, t2, t3, 1};
new V3GraphEdge{&graph, t2, t4, 1};
new V3GraphEdge{&graph, t3, t5, 1};
new V3GraphEdge{&graph, t4, t6, 1};
constexpr uint32_t threads = 2;
constexpr uint32_t hierThreads = 6;
PackThreads packer{threads, hierThreads,
3, // Sandbag numerator
10}; // Sandbag denom
const std::vector<ThreadSchedule> scheduled = packer.pack(graph);
UASSERT_SELFTEST(size_t, scheduled.size(), 3);
UASSERT_SELFTEST(size_t, scheduled[0].m_threads.size(), threads);
UASSERT_SELFTEST(size_t, scheduled[0].m_threads[0].size(), 2);
for (size_t i = 1; i < scheduled[0].m_threads.size(); ++i)
UASSERT_SELFTEST(size_t, scheduled[0].m_threads[i].size(), 0);
UASSERT_SELFTEST(const ExecMTask*, scheduled[0].m_threads[0][0], t0);
UASSERT_SELFTEST(const ExecMTask*, scheduled[0].m_threads[0][1], t1);
UASSERT_SELFTEST(size_t, scheduled[1].m_threads.size(), hierThreads / 3);
UASSERT_SELFTEST(const ExecMTask*, scheduled[1].m_threads[0][0], t2);
UASSERT_SELFTEST(const ExecMTask*, scheduled[1].m_threads[0][1], t3);
UASSERT_SELFTEST(const ExecMTask*, scheduled[1].m_threads[1][0], t4);
UASSERT_SELFTEST(size_t, scheduled[2].m_threads.size(), threads);
UASSERT_SELFTEST(const ExecMTask*, scheduled[2].m_threads[0][0], t5);
UASSERT_SELFTEST(const ExecMTask*, scheduled[2].m_threads[1][0], t6);
UASSERT_SELFTEST(size_t, ThreadSchedule::s_mtaskState.size(), 7);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t0), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t1), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t2), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t3), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t4), 1);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t5), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t6), 1);
// On its native thread, we see the actual end time for t0:
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t0, 0), 1000);
// On the other thread, we see a sandbagged end time which does not
// exceed the t1 end time:
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t0, 1), 1099);
// Actual end time on native thread:
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t1, 0), 1100);
// Sandbagged end time seen on thread 1. Note it does not compound
// with t0's sandbagged time; compounding caused trouble in
// practice.
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t1, 1), 1130);
// Wide task scheduling
// Task does not depend on previous or future schedules
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t2, 0), 0);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[2], t2, 0), 0);
// We allow sandbagging for hierarchical children tasks, this does not affect
// wide task scheduling. When the next schedule is created it doesn't matter
// anyway.
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 0), 1200);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 1), 1230);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 2), 1230);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 3), 1230);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 4), 1230);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t2, 5), 1230);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 0), 1300);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 1), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 2), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 3), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 4), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t3, 5), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 0), 1360);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 1), 1330);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 2), 1360);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 3), 1360);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 4), 1360);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t4, 5), 1360);
for (V3GraphVertex& vtx : graph.vertices()) vtx.as<ExecMTask>()->funcp()->deleteTree();
VL_DO_DANGLING(execGraphp->deleteTree(), execGraphp);
ThreadSchedule::s_mtaskState.clear();
}
static void selfTestHierFirst() {
FileLine* const flp = v3Global.rootp()->fileline();
AstExecGraph* const execGraphp = new AstExecGraph{flp, "test"};
V3Graph& graph = *execGraphp->depGraphp();
const auto makeBody = [&]() -> AstNodeStmt* { return new AstComment{flp, ""}; };
ExecMTask* const t0 = new ExecMTask{execGraphp, nullptr, makeBody()};
t0->cost(1000);
t0->priority(1100);
t0->threads(2);
ExecMTask* const t1 = new ExecMTask{execGraphp, nullptr, makeBody()};
t1->cost(100);
t1->priority(100);
/*
0
|
1
*/
new V3GraphEdge{&graph, t0, t1, 1};
constexpr uint32_t threads = 1;
constexpr uint32_t hierThreads = 2;
PackThreads packer{threads, hierThreads,
3, // Sandbag numerator
10}; // Sandbag denom
const std::vector<ThreadSchedule> scheduled = packer.pack(graph);
UASSERT_SELFTEST(size_t, scheduled.size(), 2);
UASSERT_SELFTEST(size_t, scheduled[0].m_threads.size(), hierThreads / 2);
UASSERT_SELFTEST(size_t, scheduled[0].m_threads[0].size(), 1);
for (size_t i = 1; i < scheduled[0].m_threads.size(); ++i)
UASSERT_SELFTEST(size_t, scheduled[0].m_threads[i].size(), 0);
UASSERT_SELFTEST(const ExecMTask*, scheduled[0].m_threads[0][0], t0);
UASSERT_SELFTEST(size_t, scheduled[1].m_threads.size(), threads);
UASSERT_SELFTEST(size_t, scheduled[1].m_threads[0].size(), 1);
for (size_t i = 1; i < scheduled[1].m_threads.size(); ++i)
UASSERT_SELFTEST(size_t, scheduled[1].m_threads[i].size(), 0);
UASSERT_SELFTEST(const ExecMTask*, scheduled[1].m_threads[0][0], t1);
UASSERT_SELFTEST(size_t, ThreadSchedule::s_mtaskState.size(), 2);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t0), 0);
UASSERT_SELFTEST(uint32_t, ThreadSchedule::threadId(t1), 0);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[0], t0, 0), 1000);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t1, 0), 1100);
UASSERT_SELFTEST(uint32_t, packer.completionTime(scheduled[1], t1, 1), 1130);
for (V3GraphVertex& vtx : graph.vertices()) vtx.as<ExecMTask>()->funcp()->deleteTree();
VL_DO_DANGLING(execGraphp->deleteTree(), execGraphp);
ThreadSchedule::s_mtaskState.clear();
}
static std::vector<ThreadSchedule> apply(V3Graph& mtaskGraph) {
return PackThreads{}.pack(mtaskGraph);
}
};
using EstimateAndProfiled = std::pair<uint64_t, uint64_t>; // cost est, cost profiled
using Costs = std::unordered_map<uint32_t, EstimateAndProfiled>;
void normalizeCosts(Costs& costs) {
const auto scaleCost = [](uint64_t value, double multiplier) {
double scaled = static_cast<double>(value) * multiplier;
if (value && scaled < 1) scaled = 1;
return static_cast<uint64_t>(scaled);
};
// For all costs with a profile, compute sum
uint64_t sumCostProfiled = 0; // For data with estimate and profile
uint64_t sumCostEstimate = 0; // For data with estimate and profile
for (const auto& est : costs) {
if (est.second.second) {
sumCostEstimate += est.second.first;
sumCostProfiled += est.second.second;
}
}
if (sumCostEstimate) {
// For data where we don't have profiled data, compute how much to
// scale up/down the estimate to make on same relative scale as
// profiled data. (Improves results if only a few profiles missing.)
const double estToProfile
= static_cast<double>(sumCostProfiled) / static_cast<double>(sumCostEstimate);
UINFO(5, "Estimated data needs scaling by " << estToProfile
<< ", sumCostProfiled=" << sumCostProfiled
<< " sumCostEstimate=" << sumCostEstimate);
for (auto& est : costs) {
uint64_t& costEstimate = est.second.first;
costEstimate = scaleCost(costEstimate, estToProfile);
}
}
// COSTS can overflow a uint32. Using maximum value of costs, scale all down
uint64_t maxCost = 0;
for (auto& est : costs) {
const uint64_t& costEstimate = est.second.first;
const uint64_t& costProfiled = est.second.second;
if (maxCost < costEstimate) maxCost = costEstimate;
if (maxCost < costProfiled) maxCost = costProfiled;
UINFO(9, "Post uint scale: ce = " << est.second.first << " cp=" << est.second.second);
}
const uint64_t scaleDownTo = 10000000; // Extra room for future algorithms to add costs
if (maxCost > scaleDownTo) {
const double scaleup = static_cast<double>(scaleDownTo) / static_cast<double>(maxCost);
UINFO(5, "Scaling data to within 32-bits by multiply by=" << scaleup
<< ", maxCost=" << maxCost);
for (auto& est : costs) {
est.second.first = scaleCost(est.second.first, scaleup);
est.second.second = scaleCost(est.second.second, scaleup);
}
}
}
void removeEmptyMTasks(V3Graph* execMTaskGraphp) {
for (V3GraphVertex* const vtxp : execMTaskGraphp->vertices().unlinkable()) {
ExecMTask* const mtaskp = vtxp->as<ExecMTask>();
AstCFunc* const funcp = mtaskp->funcp();
if (funcp->stmtsp()) continue;
UINFO(6, "Removing empty MTask " << mtaskp->name());
// Redirect edges
mtaskp->rerouteEdges(execMTaskGraphp);
// Delete the MTask function
VL_DO_DANGLING(funcp->unlinkFrBack()->deleteTree(), funcp);
// Delete the MTask vertex
VL_DO_DANGLING(mtaskp->unlinkDelete(execMTaskGraphp), mtaskp);
}
// Remove redundant dependencies
execMTaskGraphp->removeRedundantEdgesMax(&V3GraphEdge::followAlwaysTrue);
}
void fillinCosts(V3Graph* execMTaskGraphp) {
// Pass 1: See what profiling data applies
Costs costs; // For each mtask, costs
for (V3GraphVertex& vtx : execMTaskGraphp->vertices()) {
ExecMTask* const mtp = vtx.as<ExecMTask>();
// This estimate is 64 bits, but the final mtask graph algorithm needs 32 bits
const uint64_t costEstimate = V3InstrCount::count(mtp->funcp(), false);
const uint64_t costProfiled
= V3Control::getProfileData(v3Global.opt.prefix(), mtp->hashName());
if (costProfiled) {
UINFO(5, "Profile data for mtask " << mtp->id() << " " << mtp->hashName()
<< " cost override " << costProfiled);
}
costs[mtp->id()] = std::make_pair(costEstimate, costProfiled);
}
normalizeCosts(costs /*ref*/);
int totalEstimates = 0;
int missingProfiles = 0;
for (V3GraphVertex& vtx : execMTaskGraphp->vertices()) {
ExecMTask* const mtp = vtx.as<ExecMTask>();
const uint32_t costEstimate = costs[mtp->id()].first;
const uint64_t costProfiled = costs[mtp->id()].second;
UINFO(9, "ce = " << costEstimate << " cp=" << costProfiled);
UASSERT(costEstimate <= (1UL << 31), "cost scaling math would overflow uint32");
UASSERT(costProfiled <= (1UL << 31), "cost scaling math would overflow uint32");
const uint64_t costProfiled32 = static_cast<uint32_t>(costProfiled);
uint32_t costToUse = costProfiled32;
if (!costProfiled32) {
costToUse = costEstimate;
if (costEstimate != 0) ++missingProfiles;
}
if (costEstimate != 0) ++totalEstimates;
mtp->cost(costToUse);
mtp->priority(costToUse);
}
if (missingProfiles) {
if (FileLine* const fl = V3Control::getProfileDataFileLine()) {
if (V3Control::containsMTaskProfileData()) {
fl->v3warn(PROFOUTOFDATE, "Profile data for mtasks may be out of date. "
<< missingProfiles << " of " << totalEstimates
<< " mtasks had no data");
}
}
}
}
void finalizeCosts(V3Graph* execMTaskGraphp) {
GraphStreamUnordered ser(execMTaskGraphp, GraphWay::REVERSE);
while (const V3GraphVertex* const vxp = ser.nextp()) {
ExecMTask* const mtp = const_cast<V3GraphVertex*>(vxp)->as<ExecMTask>();
// "Priority" is the critical path from the start of the mtask, to
// the end of the graph reachable from this mtask. Given the
// choice among several ready mtasks, we'll want to start the
// highest priority one first, so we're always working on the "long
// pole"
for (V3GraphEdge& edge : mtp->outEdges()) {
const ExecMTask* const followp = edge.top()->as<ExecMTask>();
if ((followp->priority() + mtp->cost()) > mtp->priority()) {
mtp->priority(followp->priority() + mtp->cost());
}
}
}
// Removing tasks may cause edges that were formerly non-transitive to
// become transitive. Also we just created new edges around the removed
// tasks, which could be transitive. Prune out all transitive edges.
execMTaskGraphp->removeTransitiveEdges();
// Record summary stats for final m_tasks graph.
const auto report = execMTaskGraphp->parallelismReport(
[](const V3GraphVertex* vtxp) { return vtxp->as<const ExecMTask>()->cost(); });
V3Stats::addStat("MTask graph, final, critical path cost", report.criticalPathCost());
V3Stats::addStat("MTask graph, final, total graph cost", report.totalGraphCost());
V3Stats::addStat("MTask graph, final, mtask count", report.vertexCount());
V3Stats::addStat("MTask graph, final, edge count", report.edgeCount());
V3Stats::addStat("MTask graph, final, parallelism factor", report.parallelismFactor());
if (debug() >= 3) {
UINFO(0, "\n");
UINFO(0, " Final mtask parallelism report:");
UINFO(0, " Critical path cost = " << report.criticalPathCost());
UINFO(0, " Total graph cost = " << report.totalGraphCost());
UINFO(0, " MTask vertex count = " << report.vertexCount());
UINFO(0, " Edge count = " << report.edgeCount());
UINFO(0, " Parallelism factor = " << report.parallelismFactor());
}
}
void addMTaskToFunction(const ThreadSchedule& schedule, const uint32_t threadId, AstCFunc* funcp,
const ExecMTask* mtaskp) {
AstScope* const scopep = v3Global.rootp()->topScopep()->scopep();
AstNodeModule* const modp = v3Global.rootp()->topModulep();
FileLine* const fl = modp->fileline();
// Helper function to make the code a bit more legible
const auto addCStmt = [=](const string& stmt) -> void { //
funcp->addStmtsp(new AstCStmt{fl, stmt});
};
if (const uint32_t nDependencies = schedule.crossThreadDependencies(mtaskp)) {
// This mtask has dependencies executed on another thread, so it may block. Create the task
// state variable and wait to be notified.
const string name = "__Vm_mtaskstate_" + cvtToStr(mtaskp->id());
AstBasicDType* const s_mtaskStateDtypep
= v3Global.rootp()->typeTablep()->findBasicDType(fl, VBasicDTypeKwd::MTASKSTATE);
AstVar* const varp = new AstVar{fl, VVarType::MODULETEMP, name, s_mtaskStateDtypep};
varp->valuep(new AstConst{fl, nDependencies});
varp->protect(false); // Do not protect as we have references in text
modp->addStmtsp(varp);
// For now, reference is still via text bashing
if (v3Global.opt.profExec()) {
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).threadScheduleWaitBegin();");
}
addCStmt("vlSelf->" + name + +".waitUntilUpstreamDone(even_cycle);");
if (v3Global.opt.profExec()) {
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).threadScheduleWaitEnd();");
}
}
if (v3Global.opt.profPgo()) {
// No lock around startCounter, as counter numbers are unique per thread
addCStmt("vlSymsp->_vm_pgoProfiler.startCounter(" + std::to_string(mtaskp->id()) + ");");
}
// Call the MTask function
AstCCall* const callp = new AstCCall{fl, mtaskp->funcp()};
callp->selfPointer(VSelfPointerText{VSelfPointerText::VlSyms{}, scopep->nameDotless()});
callp->dtypeSetVoid();
funcp->addStmtsp(callp->makeStmt());
if (v3Global.opt.profPgo()) {
// No lock around stopCounter, as counter numbers are unique per thread
addCStmt("vlSymsp->_vm_pgoProfiler.stopCounter(" + std::to_string(mtaskp->id()) + ");");
}
// For any dependent mtask that's on another thread, signal one dependency completion.
for (const V3GraphEdge& edge : mtaskp->outEdges()) {
const ExecMTask* const nextp = edge.top()->as<ExecMTask>();
if (schedule.threadId(nextp) != threadId && schedule.contains(nextp)) {
addCStmt("vlSelf->__Vm_mtaskstate_" + cvtToStr(nextp->id())
+ ".signalUpstreamDone(even_cycle);");
}
}
}
const std::vector<AstCFunc*> createThreadFunctions(const ThreadSchedule& schedule,
const string& tag) {
AstNodeModule* const modp = v3Global.rootp()->topModulep();
FileLine* const fl = modp->fileline();
std::vector<AstCFunc*> funcps;
// For each thread, create a function representing its entry point
for (const std::vector<const ExecMTask*>& thread : schedule.m_threads) {
if (thread.empty()) continue;
const uint32_t threadId = schedule.threadId(thread.front());
const string name{"__Vthread__" + tag + "__s" + cvtToStr(schedule.id()) + "__t"
+ cvtToStr(threadId)};
AstCFunc* const funcp = new AstCFunc{fl, name, nullptr, "void"};
modp->addStmtsp(funcp);
funcps.push_back(funcp);
funcp->isStatic(true); // Uses void self pointer, so static and hand rolled
funcp->isLoose(true);
funcp->entryPoint(true);
funcp->argTypes("void* voidSelf, bool even_cycle");
// Setup vlSelf and vlSyms
funcp->addStmtsp(new AstCStmt{fl, EmitCUtil::voidSelfAssign(modp)});
funcp->addStmtsp(new AstCStmt{fl, EmitCUtil::symClassAssign()});
// Invoke each mtask scheduled to this thread from the thread function
for (const ExecMTask* const mtaskp : thread) {
addMTaskToFunction(schedule, threadId, funcp, mtaskp);
}
// Unblock the fake "final" mtask when this thread is finished
funcp->addStmtsp(new AstCStmt{fl, "vlSelf->__Vm_mtaskstate_final__"
+ cvtToStr(schedule.id()) + tag
+ ".signalUpstreamDone(even_cycle);"});
}
// Create the fake "final" mtask state variable
AstBasicDType* const s_mtaskStateDtypep
= v3Global.rootp()->typeTablep()->findBasicDType(fl, VBasicDTypeKwd::MTASKSTATE);
AstVar* const varp = new AstVar{fl, VVarType::MODULETEMP,
"__Vm_mtaskstate_final__" + cvtToStr(schedule.id()) + tag,
s_mtaskStateDtypep};
varp->valuep(new AstConst(fl, funcps.size()));
varp->protect(false); // Do not protect as we have references in text
modp->addStmtsp(varp);
return funcps;
}
void addThreadStartWrapper(AstExecGraph* const execGraphp) {
// FileLine used for constructing nodes below
FileLine* const fl = v3Global.rootp()->fileline();
const string& tag = execGraphp->name();
// Add thread function invocations to execGraph
const auto addCStmt = [=](const string& stmt) -> void { //
execGraphp->addStmtsp(new AstCStmt{fl, stmt});
};
if (v3Global.opt.profExec()) {
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).execGraphBegin();");
}
addCStmt("vlSymsp->__Vm_even_cycle__" + tag + " = !vlSymsp->__Vm_even_cycle__" + tag + ";");
if (!v3Global.opt.hierBlocks().empty()) addCStmt("std::vector<size_t> indexes;");
}
void addThreadEndWrapper(AstExecGraph* const execGraphp) {
// Add thread function invocations to execGraph
const auto addCStmt = [=](const string& stmt) -> void { //
FileLine* const flp = v3Global.rootp()->fileline();
execGraphp->addStmtsp(new AstCStmt{flp, stmt});
};
addCStmt("Verilated::mtaskId(0);");
if (v3Global.opt.profExec()) { addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).execGraphEnd();"); }
}
void addThreadStartToExecGraph(AstExecGraph* const execGraphp,
const std::vector<AstCFunc*>& funcps, uint32_t scheduleId) {
// FileLine used for constructing nodes below
FileLine* const fl = v3Global.rootp()->fileline();
const string& tag = execGraphp->name();
// Add thread function invocations to execGraph
const auto addCStmt = [=](const string& stmt) -> void { //
execGraphp->addStmtsp(new AstCStmt{fl, stmt});
};
const uint32_t last = funcps.size() - 1;
if (!v3Global.opt.hierBlocks().empty() && last > 0) {
addCStmt("for (size_t i = 0; i < " + std::to_string(last) + "; ++i) {\n" //
+ "indexes.push_back(vlSymsp->__Vm_threadPoolp->assignWorkerIndex());\n" //
+ "}");
}
uint32_t i = 0;
for (AstCFunc* const funcp : funcps) {
if (i != last) {
// The first N-1 will run on the thread pool.
AstCStmt* const cstmtp = new AstCStmt{fl};
execGraphp->addStmtsp(cstmtp);
cstmtp->add("vlSymsp->__Vm_threadPoolp->workerp(");
if (v3Global.opt.hierChild() || !v3Global.opt.hierBlocks().empty()) {
cstmtp->add("indexes[" + std::to_string(i) + "]");
} else {
cstmtp->add(std::to_string(i));
}
cstmtp->add(")->addTask(");
cstmtp->add(new AstAddrOfCFunc{fl, funcp});
cstmtp->add(", vlSelf, vlSymsp->__Vm_even_cycle__" + tag + ");");
} else {
// The last will run on the main thread.
AstCCall* const callp = new AstCCall{fl, funcp};
callp->dtypeSetVoid();
callp->argTypes("vlSelf, vlSymsp->__Vm_even_cycle__" + tag);
execGraphp->addStmtsp(callp->makeStmt());
}
++i;
}
V3Stats::addStatSum("Optimizations, Thread schedule total tasks", i);
if (v3Global.opt.profExec()) {
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).threadScheduleWaitBegin();");
}
addCStmt("vlSelf->__Vm_mtaskstate_final__" + std::to_string(scheduleId) + tag
+ ".waitUntilUpstreamDone(vlSymsp->__Vm_even_cycle__" + tag + ");");
if (v3Global.opt.profExec()) {
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).threadScheduleWaitEnd();");
}
// Free all assigned worker indices in this section
if (!v3Global.opt.hierBlocks().empty() && last > 0) {
addCStmt("vlSymsp->__Vm_threadPoolp->freeWorkerIndexes(indexes);");
}
}
void processMTaskBodies(AstExecGraph* const execGraphp) {
for (V3GraphVertex* const vtxp : execGraphp->depGraphp()->vertices().unlinkable()) {
ExecMTask* const mtaskp = vtxp->as<ExecMTask>();
AstCFunc* const funcp = mtaskp->funcp();
// Temporarily unlink function body so we can add more statemetns
AstNode* stmtsp = funcp->stmtsp()->unlinkFrBackWithNext();
// Helper function to make the code a bit more legible
const auto addCStmt = [=](const string& stmt) -> void { //
funcp->addStmtsp(new AstCStmt{execGraphp->fileline(), stmt});
};
// Profiling mtaskStart
if (v3Global.opt.profExec()) {
std::string args = std::to_string(mtaskp->id());
args += ", " + std::to_string(mtaskp->predictStart());
args += ", \"";
if (v3Global.opt.hierChild()) args += v3Global.opt.topModule();
args += "\"";
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).mtaskBegin(" + args + ");");
}
// Set mtask ID in the run-time system
addCStmt("Verilated::mtaskId(" + std::to_string(mtaskp->id()) + ");");
// Add back the body
funcp->addStmtsp(stmtsp);
// Flush message queue
addCStmt("Verilated::endOfThreadMTask(vlSymsp->__Vm_evalMsgQp);");
// Profiling mtaskEnd
if (v3Global.opt.profExec()) {
const std::string& args = std::to_string(mtaskp->cost());
addCStmt("VL_EXEC_TRACE_ADD_RECORD(vlSymsp).mtaskEnd(" + args + ");");
}
}
}
void implementExecGraph(AstExecGraph* const execGraphp, const ThreadSchedule& schedule) {
// Nothing to be done if there are no MTasks in the graph at all.
if (execGraphp->depGraphp()->empty()) return;
// Create a function to be run by each thread.
const std::vector<AstCFunc*>& funcps = createThreadFunctions(schedule, execGraphp->name());
UASSERT(!funcps.empty(), "Non-empty ExecGraph yields no threads?");
// Start the thread functions at the point this AstExecGraph is located in the tree.
addThreadStartToExecGraph(execGraphp, funcps, schedule.id());
}
// Called by Verilator top stage
void implement(AstNetlist* netlistp) {
// Gather all ExecGraphs
std::vector<AstExecGraph*> execGraphps;
netlistp->topModulep()->foreach([&](AstExecGraph* egp) { execGraphps.emplace_back(egp); });
// Process each
for (AstExecGraph* const execGraphp : execGraphps) {
// We can delete the placeholder calls to the MTask functions that
// were used for code analysis until now. We will replace them with
// statements that dispatch execution to the thread pool.
if (execGraphp->stmtsp()) execGraphp->stmtsp()->unlinkFrBackWithNext()->deleteTree();
// Some MTasks may have become empty after scheduling due to
// optimizations after scheduling. Remove those.
removeEmptyMTasks(execGraphp->depGraphp());
// In some very small test cases, we might end up with a completely
// empty ExecGraph, if so just delete it.
if (execGraphp->depGraphp()->empty()) {
VL_DO_DANGLING(execGraphp->unlinkFrBack()->deleteTree(), execGraphp);
return;
}
// Back in V3Order, we partitioned mtasks using provisional cost
// estimates. However, V3Order precedes some optimizations (notably
// V3LifePost) that can change the cost of logic within each mtask.
// Now that logic is final, recompute the cost and priority of each
// ExecMTask.
fillinCosts(execGraphp->depGraphp());
finalizeCosts(execGraphp->depGraphp());
if (dumpGraphLevel() >= 4) execGraphp->depGraphp()->dumpDotFilePrefixedAlways("pack");
addThreadStartWrapper(execGraphp);
// Schedule the mtasks: statically associate each mtask with a thread,
// and determine the order in which each thread will run its mtasks.
const std::vector<ThreadSchedule> packed = PackThreads::apply(*execGraphp->depGraphp());
V3Stats::addStatSum("Optimizations, Thread schedule count",
static_cast<double>(packed.size()));
// Process MTask function bodies to add additional code
processMTaskBodies(execGraphp);
for (const ThreadSchedule& schedule : packed) {
// Replace the graph body with its multi-threaded implementation.
implementExecGraph(execGraphp, schedule);
}
addThreadEndWrapper(execGraphp);
}
}
void selfTest() {
{ // Test that omitted profile data correctly scales estimates
Costs costs({// id est prof
{1, {10, 1000}},
{2, {20, 0}}, // Note no profile
{3, {30, 3000}}});
normalizeCosts(costs);
UASSERT_SELFTEST(uint64_t, costs[1].first, 1000);
UASSERT_SELFTEST(uint64_t, costs[1].second, 1000);
UASSERT_SELFTEST(uint64_t, costs[2].first, 2000);
UASSERT_SELFTEST(uint64_t, costs[2].second, 0);
UASSERT_SELFTEST(uint64_t, costs[3].first, 3000);
UASSERT_SELFTEST(uint64_t, costs[3].second, 3000);
}
{ // Test that very large profile data properly scales
Costs costs({// id est prof
{1, {10, 100000000000}},
{2, {20, 200000000000}},
{3, {30, 1}}}); // Make sure doesn't underflow
normalizeCosts(costs);
UASSERT_SELFTEST(uint64_t, costs[1].first, 2500000);
UASSERT_SELFTEST(uint64_t, costs[1].second, 5000000);
UASSERT_SELFTEST(uint64_t, costs[2].first, 5000000);
UASSERT_SELFTEST(uint64_t, costs[2].second, 10000000);
UASSERT_SELFTEST(uint64_t, costs[3].first, 7500000);
UASSERT_SELFTEST(uint64_t, costs[3].second, 1);
}
PackThreads::selfTest();
}
} // namespace V3ExecGraph