verilator/src/V3DfgPasses.cpp

543 lines
22 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Implementations of simple passes over DfgGraph
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3DfgPasses.h"
#include "V3Dfg.h"
#include "V3File.h"
#include "V3Global.h"
#include "V3String.h"
VL_DEFINE_DEBUG_FUNCTIONS;
// Common sub-expression elimination
void V3DfgPasses::cse(DfgGraph& dfg, V3DfgCseContext& ctx) {
// Remove common sub-expressions
{
// Used by DfgVertex::hash
const auto userDataInUse = dfg.userDataInUse();
DfgVertex::EqualsCache equalsCache;
std::unordered_map<V3Hash, std::vector<DfgVertex*>> verticesWithEqualHashes;
verticesWithEqualHashes.reserve(dfg.size());
// Pre-hash variables, these are all unique, so just set their hash to a unique value
uint32_t varHash = 0;
for (DfgVertexVar& vtx : dfg.varVertices()) vtx.user<V3Hash>() = V3Hash{++varHash};
// Similarly pre-hash constants for speed. While we don't combine constants, we do want
// expressions using the same constants to be combined, so we do need to hash equal
// constants to equal values.
for (DfgConst* const vtxp : dfg.constVertices().unlinkable()) {
// Delete unused constants while we are at it.
if (!vtxp->hasSinks()) {
VL_DO_DANGLING(vtxp->unlinkDelete(dfg), vtxp);
continue;
}
vtxp->user<V3Hash>() = vtxp->num().toHash() + varHash;
}
// Combine operation vertices
for (DfgVertex* const vtxp : dfg.opVertices().unlinkable()) {
// Delete unused nodes while we are at it.
if (!vtxp->hasSinks()) {
vtxp->unlinkDelete(dfg);
continue;
}
const V3Hash hash = vtxp->hash();
std::vector<DfgVertex*>& vec = verticesWithEqualHashes[hash];
bool replaced = false;
for (DfgVertex* const candidatep : vec) {
if (candidatep->equals(*vtxp, equalsCache)) {
++ctx.m_eliminated;
vtxp->replaceWith(candidatep);
VL_DO_DANGLING(vtxp->unlinkDelete(dfg), vtxp);
replaced = true;
break;
}
}
if (replaced) continue;
vec.push_back(vtxp);
}
}
// Prune unused nodes
removeUnused(dfg);
}
void V3DfgPasses::inlineVars(DfgGraph& dfg) {
for (DfgVertexVar& vtx : dfg.varVertices()) {
if (DfgVarPacked* const varp = vtx.cast<DfgVarPacked>()) {
if (varp->hasSinks() && varp->isDrivenFullyByDfg()) {
DfgVertex* const driverp = varp->srcp();
varp->forEachSinkEdge([=](DfgEdge& edge) { edge.relinkSource(driverp); });
}
}
}
}
void V3DfgPasses::removeUnused(DfgGraph& dfg) {
// DfgVertex::user is the next pointer of the work list elements
const auto userDataInUse = dfg.userDataInUse();
// Head of work list. Note that we want all next pointers in the list to be non-zero (including
// that of the last element). This allows as to do two important things: detect if an element
// is in the list by checking for a non-zero next pointer, and easy prefetching without
// conditionals. The address of the graph is a good sentinel as it is a valid memory address,
// and we can easily check for the end of the list.
DfgVertex* const sentinelp = reinterpret_cast<DfgVertex*>(&dfg);
DfgVertex* workListp = sentinelp;
// Add all unused vertices to the work list. This also allocates all DfgVertex::user.
for (DfgVertex& vtx : dfg.opVertices()) {
if (vtx.hasSinks()) {
// This vertex is used. Allocate user, but don't add to work list.
vtx.setUser<DfgVertex*>(nullptr);
} else {
// This vertex is unused. Add to work list.
vtx.setUser<DfgVertex*>(workListp);
workListp = &vtx;
}
}
// Process the work list
while (workListp != sentinelp) {
// Pick up the head
DfgVertex* const vtxp = workListp;
// Detach the head
workListp = vtxp->getUser<DfgVertex*>();
// Prefetch next item
VL_PREFETCH_RW(workListp);
// If used, then nothing to do, so move on
if (vtxp->hasSinks()) continue;
// Add sources of unused vertex to work list
vtxp->forEachSource([&](DfgVertex& src) {
// We only remove actual operation vertices in this loop
if (src.is<DfgConst>() || src.is<DfgVertexVar>()) return;
// If already in work list then nothing to do
if (src.getUser<DfgVertex*>()) return;
// Actually add to work list.
src.setUser<DfgVertex*>(workListp);
workListp = &src;
});
// Remove the unused vertex
vtxp->unlinkDelete(dfg);
}
// Finally remove unused constants
for (DfgConst* const vtxp : dfg.constVertices().unlinkable()) {
if (!vtxp->hasSinks()) VL_DO_DANGLING(vtxp->unlinkDelete(dfg), vtxp);
}
}
void V3DfgPasses::binToOneHot(DfgGraph& dfg, V3DfgBinToOneHotContext& ctx) {
UASSERT(dfg.modulep(), "binToOneHot only works with unscoped DfgGraphs for now");
const auto userDataInUse = dfg.userDataInUse();
// Structure to keep track of comparison details
struct Term final {
DfgVertex* m_vtxp; // Vertex to replace
bool m_inv; // '!=', instead of '=='
Term() = default;
Term(DfgVertex* vtxp, bool inv)
: m_vtxp{vtxp}
, m_inv{inv} {}
};
// Map from 'value beign compared' -> 'terms', stored in DfgVertex::user()
using Val2Terms = std::map<uint32_t, std::vector<Term>>;
// Allocator for Val2Terms, so it's cleaned up on return
std::deque<Val2Terms> val2TermsAllocator;
// List of vertices that are used as sources
std::vector<DfgVertex*> srcps;
// Only consider input variables from a reasonable range:
// - not too big to avoid huge tables, you are doomed anyway at that point..
// - not too small, as it's probably not worth it
constexpr uint32_t WIDTH_MIN = 7;
constexpr uint32_t WIDTH_MAX = 20;
const auto widthOk = [](const DfgVertex* vtxp) {
const uint32_t width = vtxp->width();
return WIDTH_MIN <= width && width <= WIDTH_MAX;
};
// Do not convert terms that look like they are in a Cond tree
// the C++ compiler can generate jump tables for these
const std::function<bool(const DfgVertex*, bool)> useOk
= [&](const DfgVertex* vtxp, bool inv) -> bool {
// Go past a single 'Not' sink, which is common
if (DfgVertex* const sinkp = vtxp->singleSink()) {
if (sinkp->is<DfgNot>()) return useOk(sinkp, !inv);
}
return !vtxp->findSink<DfgCond>([vtxp, inv](const DfgCond& sink) {
if (sink.condp() != vtxp) return false;
return inv ? sink.thenp()->is<DfgCond>() : sink.elsep()->is<DfgCond>();
});
};
// Look at all comparison nodes and build the 'Val2Terms' map for each source vertex
uint32_t nTerms = 0;
for (DfgVertex& vtx : dfg.opVertices()) {
DfgVertex* srcp = nullptr;
uint32_t val = 0;
bool inv = false;
if (DfgEq* const eqp = vtx.cast<DfgEq>()) {
DfgConst* const constp = eqp->lhsp()->cast<DfgConst>();
if (!constp || !widthOk(constp) || !useOk(eqp, false)) continue;
srcp = eqp->rhsp();
val = constp->toU32();
inv = false;
} else if (DfgNeq* const neqp = vtx.cast<DfgNeq>()) {
DfgConst* const constp = neqp->lhsp()->cast<DfgConst>();
if (!constp || !widthOk(constp) || !useOk(neqp, true)) continue;
srcp = neqp->rhsp();
val = constp->toU32();
inv = true;
} else if (DfgRedAnd* const redAndp = vtx.cast<DfgRedAnd>()) {
srcp = redAndp->srcp();
if (!widthOk(srcp) || !useOk(redAndp, false)) continue;
val = (1U << srcp->width()) - 1;
inv = false;
} else if (DfgRedOr* const redOrp = vtx.cast<DfgRedOr>()) {
srcp = redOrp->srcp();
if (!widthOk(srcp) || !useOk(redOrp, true)) continue;
val = 0;
inv = true;
} else {
// Not a comparison-like vertex
continue;
}
// Grab the Val2Terms entry
Val2Terms*& val2Termspr = srcp->user<Val2Terms*>();
if (!val2Termspr) {
// Remeber and allocate on first encounter
srcps.emplace_back(srcp);
val2TermsAllocator.emplace_back();
val2Termspr = &val2TermsAllocator.back();
}
// Record term
(*val2Termspr)[val].emplace_back(&vtx, inv);
++nTerms;
}
// Somewhat arbitrarily, only apply if more than 64 unique comparisons are required
constexpr uint32_t TERM_LIMIT = 65;
// This should hold, otherwise we do redundant work gathering terms that will never be used
static_assert((1U << WIDTH_MIN) >= TERM_LIMIT, "TERM_LIMIT too big relative to 2**WIDTH_MIN");
// Fast path exit if we surely don't need to convet anything
if (nTerms < TERM_LIMIT) return;
// Sequence numbers for name generation
size_t nTables = 0;
// Create decoders for each srcp
for (DfgVertex* const srcp : srcps) {
const Val2Terms& val2Terms = *srcp->getUser<Val2Terms*>();
// If not enough terms in this vertex, ignore
if (val2Terms.size() < TERM_LIMIT) continue;
// Width of the decoded binary value
const uint32_t width = srcp->width();
// Number of bits in the input operand
const uint32_t nBits = 1U << width;
// Construct the decoder by converting many "const == vtx" by:
// - Adding a single decoder block, where 'tab' is zero initialized:
// always_comb begin
// tab[pre] = 0;
// tab[vtx] = 1;
// pre = vtx;
// end
// We mark 'pre' so the write is ignored during scheduling, so this
// won't cause a combinational cycle.
// Note that albeit this looks like partial udpates to 'tab', the
// actual result is that only one value in 'tab' is ever one, while
// all the others are always zero.
// - and replace the comparisons with 'tab[const]'
FileLine* const flp = srcp->fileline();
// Required data types
AstNodeDType* const idxDTypep = srcp->dtypep();
AstNodeDType* const bitDTypep = DfgVertex::dtypeForWidth(1);
AstUnpackArrayDType* const tabDTypep = new AstUnpackArrayDType{
flp, bitDTypep, new AstRange{flp, static_cast<int>(nBits - 1), 0}};
v3Global.rootp()->typeTablep()->addTypesp(tabDTypep);
// The index variable
DfgVarPacked* const idxVtxp = [&]() {
// If there is an existing result variable, use that, otherwise create a new variable
DfgVarPacked* varp = nullptr;
if (DfgVertexVar* const vp = srcp->getResultVar()) {
varp = vp->as<DfgVarPacked>();
} else {
const std::string name = dfg.makeUniqueName("BinToOneHot_Idx", nTables);
varp = dfg.makeNewVar(flp, name, idxDTypep, nullptr)->as<DfgVarPacked>();
varp->varp()->isInternal(true);
varp->srcp(srcp);
}
varp->setHasModRefs();
return varp;
}();
// The previous index variable - we don't need a vertex for this
AstVar* const preVarp = [&]() {
const std::string name = dfg.makeUniqueName("BinToOneHot_Pre", nTables);
AstVar* const varp = new AstVar{flp, VVarType::MODULETEMP, name, idxDTypep};
dfg.modulep()->addStmtsp(varp);
varp->isInternal(true);
varp->noReset(true);
varp->setIgnoreSchedWrite();
return varp;
}();
// The table variable
DfgVarArray* const tabVtxp = [&]() {
const std::string name = dfg.makeUniqueName("BinToOneHot_Tab", nTables);
DfgVarArray* const varp
= dfg.makeNewVar(flp, name, tabDTypep, nullptr)->as<DfgVarArray>();
varp->varp()->isInternal(true);
varp->varp()->noReset(true);
varp->setHasModRefs();
return varp;
}();
++nTables;
++ctx.m_decodersCreated;
// Initialize 'tab' and 'pre' variables statically
AstInitialStatic* const initp = new AstInitialStatic{flp, nullptr};
dfg.modulep()->addStmtsp(initp);
{ // pre = 0
initp->addStmtsp(new AstAssign{
flp, //
new AstVarRef{flp, preVarp, VAccess::WRITE}, //
new AstConst{flp, AstConst::WidthedValue{}, static_cast<int>(width), 0}});
}
{ // tab.fill(0)
AstCMethodHard* const callp = new AstCMethodHard{
flp, new AstVarRef{flp, tabVtxp->varp(), VAccess::WRITE}, "fill"};
callp->addPinsp(new AstConst{flp, AstConst::BitFalse{}});
callp->dtypeSetVoid();
initp->addStmtsp(callp->makeStmt());
}
// Build the decoder logic
AstAlways* const logicp = new AstAlways{flp, VAlwaysKwd::ALWAYS_COMB, nullptr, nullptr};
dfg.modulep()->addStmtsp(logicp);
{ // tab[pre] = 0;
logicp->addStmtsp(new AstAssign{
flp, //
new AstArraySel{flp, new AstVarRef{flp, tabVtxp->varp(), VAccess::WRITE},
new AstVarRef{flp, preVarp, VAccess::READ}}, //
new AstConst{flp, AstConst::BitFalse{}}});
}
{ // tab[idx] = 1
logicp->addStmtsp(new AstAssign{
flp, //
new AstArraySel{flp, new AstVarRef{flp, tabVtxp->varp(), VAccess::WRITE},
new AstVarRef{flp, idxVtxp->varp(), VAccess::READ}}, //
new AstConst{flp, AstConst::BitTrue{}}});
}
{ // pre = idx
logicp->addStmtsp(new AstAssign{flp, //
new AstVarRef{flp, preVarp, VAccess::WRITE}, //
new AstVarRef{flp, idxVtxp->varp(), VAccess::READ}});
}
// Replace terms with ArraySels
for (const auto& pair : val2Terms) {
const uint32_t val = pair.first;
const std::vector<Term>& terms = pair.second;
// Create the ArraySel
FileLine* const aflp = terms.front().m_vtxp->fileline();
DfgArraySel* const aselp = new DfgArraySel{dfg, aflp, bitDTypep};
aselp->fromp(tabVtxp);
aselp->bitp(new DfgConst{dfg, aflp, width, val});
// The inverted value, if needed
DfgNot* notp = nullptr;
// Repalce the terms
for (const Term& term : terms) {
if (term.m_inv) {
if (!notp) {
notp = new DfgNot{dfg, aflp, bitDTypep};
notp->srcp(aselp);
}
term.m_vtxp->replaceWith(notp);
} else {
term.m_vtxp->replaceWith(aselp);
}
VL_DO_DANGLING(term.m_vtxp->unlinkDelete(dfg), term.m_vtxp);
}
}
}
}
void V3DfgPasses::eliminateVars(DfgGraph& dfg, V3DfgEliminateVarsContext& ctx) {
const auto userDataInUse = dfg.userDataInUse();
// Head of work list. Note that we want all next pointers in the list to be non-zero
// (including that of the last element). This allows us to do two important things: detect
// if an element is in the list by checking for a non-zero next pointer, and easy
// prefetching without conditionals. The address of the graph is a good sentinel as it is a
// valid memory address, and we can easily check for the end of the list.
DfgVertex* const sentinelp = reinterpret_cast<DfgVertex*>(&dfg);
DfgVertex* workListp = sentinelp;
// Add all variables to the initial work list
for (DfgVertexVar& vtx : dfg.varVertices()) {
vtx.setUser<DfgVertex*>(workListp);
workListp = &vtx;
}
const auto addToWorkList = [&](DfgVertex& vtx) {
// If already in work list then nothing to do
DfgVertex*& nextInWorklistp = vtx.user<DfgVertex*>();
if (nextInWorklistp) return;
// Actually add to work list.
nextInWorklistp = workListp;
workListp = &vtx;
};
// List of variables (AstVar or AstVarScope) we are replacing
std::vector<AstNode*> replacedVariables;
// AstVar::user1p() : AstVar* -> The replacement variables
// AstVarScope::user1p() : AstVarScope* -> The replacement variables
const VNUser1InUse user1InUse;
// Process the work list
while (workListp != sentinelp) {
// Pick up the head of the work list
DfgVertex* const vtxp = workListp;
// Detach the head
workListp = vtxp->getUser<DfgVertex*>();
// Reset user pointer so it can be added back to the work list later
vtxp->setUser<DfgVertex*>(nullptr);
// Prefetch next item
VL_PREFETCH_RW(workListp);
// Remove unused non-variable vertices
if (!vtxp->is<DfgVertexVar>() && !vtxp->hasSinks()) {
// Add sources of removed vertex to work list
vtxp->forEachSource(addToWorkList);
// Remove the unused vertex
vtxp->unlinkDelete(dfg);
continue;
}
// We can only eliminate DfgVarPacked vertices at the moment
DfgVarPacked* const varp = vtxp->cast<DfgVarPacked>();
if (!varp) continue;
// Can't remove if it has external drivers
if (!varp->isDrivenFullyByDfg()) continue;
// Can't remove if must be kept (including external, non module references)
if (varp->keep()) continue;
// Can't remove if referenced in other DFGs of the same module (otherwise might rm twice)
if (varp->hasDfgRefs()) continue;
// If it has multiple sinks, it can't be eliminated
if (varp->hasMultipleSinks()) continue;
if (!varp->hasModRefs()) {
// If it is only referenced in this DFG, it can be removed
++ctx.m_varsRemoved;
varp->replaceWith(varp->srcp());
varp->nodep()->unlinkFrBack()->deleteTree();
} else if (DfgVarPacked* const driverp = varp->srcp()->cast<DfgVarPacked>()) {
// If it's driven from another variable, it can be replaced by that.
// Mark it for replacement
++ctx.m_varsReplaced;
UASSERT_OBJ(!varp->hasSinks(), varp, "Variable inlining should make this impossible");
// Grab the AstVar/AstVarScope
AstNode* const nodep = varp->nodep();
UASSERT_OBJ(!nodep->user1p(), nodep, "Replacement already exists");
replacedVariables.emplace_back(nodep);
nodep->user1p(driverp->nodep());
} else {
// Otherwise this *is* the canonical var
continue;
}
// Add sources of redundant variable to the work list
vtxp->forEachSource(addToWorkList);
// Remove the redundant variable
vtxp->unlinkDelete(dfg);
}
// Job done if no replacements possible
if (replacedVariables.empty()) return;
// Apply variable replacements
if (AstModule* const modp = dfg.modulep()) {
modp->foreach([&](AstVarRef* refp) {
AstVar* varp = refp->varp();
while (AstVar* const replacep = VN_AS(varp->user1p(), Var)) varp = replacep;
refp->varp(varp);
});
} else {
v3Global.rootp()->foreach([&](AstVarRef* refp) {
AstVarScope* vscp = refp->varScopep();
while (AstVarScope* const replacep = VN_AS(vscp->user1p(), VarScope)) vscp = replacep;
refp->varScopep(vscp);
refp->varp(vscp->varp());
});
}
// Remove the replaced variables
for (AstNode* const nodep : replacedVariables) nodep->unlinkFrBack()->deleteTree();
}
void V3DfgPasses::optimize(DfgGraph& dfg, V3DfgContext& ctx) {
// There is absolutely nothing useful we can do with a graph of size 2 or less
if (dfg.size() <= 2) return;
int passNumber = 0;
const auto apply = [&](int dumpLevel, const string& name, std::function<void()> pass) {
pass();
if (dumpDfgLevel() >= dumpLevel) {
const string strippedName = VString::removeWhitespace(name);
const string label
= ctx.prefix() + "pass-" + cvtToStr(passNumber) + "-" + strippedName;
dfg.dumpDotFilePrefixed(label);
}
++passNumber;
};
if (dumpDfgLevel() >= 8) dfg.dumpDotAllVarConesPrefixed(ctx.prefix() + "input");
apply(3, "input ", [&]() {});
apply(4, "inlineVars ", [&]() { inlineVars(dfg); });
apply(4, "cse0 ", [&]() { cse(dfg, ctx.m_cseContext0); });
if (dfg.modulep()) {
apply(4, "binToOneHot ", [&]() { binToOneHot(dfg, ctx.m_binToOneHotContext); });
}
if (v3Global.opt.fDfgPeephole()) {
apply(4, "peephole ", [&]() { peephole(dfg, ctx.m_peepholeContext); });
// We just did CSE above, so without peephole there is no need to run it again these
apply(4, "cse1 ", [&]() { cse(dfg, ctx.m_cseContext1); });
}
// Accumulate patterns for reporting
if (v3Global.opt.stats()) ctx.m_patternStats.accumulate(dfg);
apply(4, "regularize", [&]() { regularize(dfg, ctx.m_regularizeContext); });
if (dumpDfgLevel() >= 8) dfg.dumpDotAllVarConesPrefixed(ctx.prefix() + "optimized");
}