Remove the large variety of ways raw "text" is represented in the Ast.
Particularly, the only thing that represents a string to be emitted in
the output is AstText.
There are 5 AstNodes that can contain AstText, and V3Emit will throw an
error if an AstText is encountered anywhere else:
- AstCStmt: Internally generated procedural statements involving raw
text.
- AstCStmtUser: This is the old AstUCStmt, renamed so it sorts next to
AstCStmt, as it's largely equivalent. We should never create this
internally unless used to represent user input. It is used for $c,
statements in the input, and for some 'systemc_* blocks.
- AstCExpr: Internally generaged expression involving raw text.
- AstCExprUser: This is the old AstUCFunc, renamed so it sorts next to
AstCExpr. It is largely equivalent, but also has more optimizations
disabled. This should never be created internally, it is only used for
$c expressions in the input.
- AstTextBlock: Use by V3ProtectLib only, to generate the hierarchical
wrappers.
Text "tracking" for indentation is always on for AstCStmt, AstCExpr, and
AstTextBlock, as these are always generated by us, and should always be
well formed.
Tracking is always off for AstCStmtUser and AstCExprUser, as these
contain arbitrary user input that might not be safe to parse for
indentation.
Remove subsequently redundant AstNodeSimpleText and AstNodeText types.
This patch also fixes incorrect indentation in emitted waveform tracing
functions, and makes the output more readable for hier block SV stubs.
With that, all raw text nodes are handled as a proper AstNodeStmt or
AstNodeExpr as required for #6280.
This patch gets rid of over 80% of temporary dynamic memory allocations
(when a malloced node is immediately freed with no other malloc in
between). It also gets rid of over 20% of all calls to malloc.
It's worth ~3% average verilation speed up with tcmalloc, and more
without tcmalloc.
This patch implements #6480. All loop statements are represented using
AstLoop and AstLoopTest.
This necessitates rework of the loop unroller to handle loops of
arbitrary form. To enable this, I have split the old unroller used for
'generate for' statements and moved it into V3Param, and subsequently
rewrote V3Unroll to handle the new representation. V3Unroll can now
unroll more complex loops, including with loop conditions containing
multiple variable references or inlined functions.
Handling the more generic code also requires some restrictions. If a
loop contains any of the following, it cannot be unrolled:
- A timing control that might suspend the loop
- A non-inlined call to a non-pure function
These constructs can change the values of variables in the loop, so are
generally not safe to unroll if they are present. (We could still unroll
if all the variables needed for unrolling are automatic, however we
don't do that right now.)
These restrictions seem ok in the benchmark suite, where the new
unroller can generally unroll many more loops than before.
The typical find/if-not-exists-insert pattern can be achieved with 1
lookup instead of 2 using emplace with a sentinel value. Also maps value
initialize their values when inserted with the [] operator, this is
defined and so there is no need to explicitly insert zeroes for integer
values.
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
- Rename `--dump-treei` option to `--dumpi-tree`, which itself is now a
special case of `--dumpi-<tag>` where tag can be a magic word, or a
filename
- Control dumping via static `dump*()` functions, analogous to `debug()`
- Make dumping independent of the value of `debug()` (so dumping always
works even without the debug flag)
- Add separate `--dumpi-graph` for dumping V3Graphs, which is again a
special case of `--dumpi-<tag>`
- Alias `--dump-<tag>` to `--dumpi-<tag> 3` as before
Introduce the @astgen directives parsed by astgen, currently used for
the generation child node (operand) accessors. Please see the updated
internal documentation for details.
Introduce the @astgen directives parsed by astgen, currently used for
the generation child node (operand) accessors. Please see the updated
internal documentation for details.
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>