Added a mini type system for Dfg using DfgDataType to replace Dfg's use
of AstNodeDType. This is much more restricted and represents only the
types Dfg can handle in a canonical form. This will be needed when
adding more support for unpacked arrays and maybe unpacked structs one
day.
Also added an internal type checker for DfgGraphs which encodes all the
assumptions the code makes about type relationships in the graph. Run
this in a few places with --debug-check. Fix resulting fallout.
Parts of this algorithm were distributed over many files some
masquerading as re-usable APIs, they were not. Move everything into one
file and avoid unnecessary virtual functions.
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.
Both V3DfgBreakCycles.cpp and V3DfgDecomposition.cpp used to contain an
implementation of the same algorithm to color strongly connected
components. Now there is only one, and it lives in V3DfgColorSCCs.cpp.
Added an algorithm that can break some combinational cycles in DFG, by
attempting to trace driver logic until we escape the cycle. This can
eliminate a decent portion of UNOPTFLAT warnings. E.g. due to this code:
```systemverilog
assign a[0] = .....;
assign a[1] = ~a[0];
```
Add a new pass to split up (recursively):
foo = {l, r};
into the following, with the right indices, iff the concatenation
straddles a wide word boundary.
foo[_:_] = r;
foo[_:_] = l;
This eliminates more wide temporaries.
Another 23% speedup on VeeR EH2 high_perf. Also brings the predicted
stack size from 8M to 40k.
The DFG peephole pass converts all associative trees into right leaning,
which is good for simplifying pattern recognition, but can lead to an
excessive amount of wide intermediate results being constructed for
right leaning concatenations.
Add a new pass to balance concatenation trees by trying to:
- Create VL_EDATASIZE (32-bit) sub-terms, so words can then be packed
easily afterwards
- Try to ensure the operands of a concat are roughly the same width
within a concatenation tree. This does not yield the shortest tree,
but it ensures it has many sub-nodes that are small enough to fit into
machine registers.
This can eliminate a lot of wide intermediate results, which would need
temporaries, and also increases ILP within sub-expressions (assuming the
C compiler can't figure that out itself).
This is over 2x run-time speedup on the high_perf configuration of
VeeR EH2 (which you could arguably also get with -fno-dfg, but oh well).
The goal here is to use as single ordering heuristic (which can be
improved later) within MTasks as we do for serial code ordering. The
heuristic itself is factored out into the new OrderMoveGraphSerializer.
This also yields slightly nicer ordering than the previously use
GraphStream, so we end up with fewer trigger (domain) conditionals in
the MTasks, this can be worth a few percent speedup.
This has the somewhat nice side-effect of reusing OrderMoveGraphVertex
for both serial and parallel mode, so MTaskMoveGraphVertex can be
removed.
Serial mode yields identical output.
V3Partition used to contain 2 conceptually separate set of algorithms
- The MTask partitioning/coarsening algorithm used by V3Order. This has
been moved to V3OrderParallel.cpp
- The lowering of AstExecGraph into per thread functions by packing
tasks into threads and creating additional code
(V3Partition::finalize). This has been moved to the new
V3ExecGraph.cpp
This patch is just code movement/rename with minimal fixes required to
do so.
Continuing the idea of decoupling the implementations of the various algorithms.
The main points:
-Move the former "processDomain" stuff, dealing with assigning combinational logic into the relevant sensitivity domains into V3OrderProcessDomains.cpp
-Move the parallel code construction in V3OrderParallel.cpp (Could combine this with some parts of V3Partition - those not called from V3Partition::finalize - but that's not for this patch).
-Move the serial code construction into V3OrderSerial.cpp
-Factored the very small common code between the parallel and serial code construction (processMoveOneLogic) into V3OrderCFuncEmitter.cpp
Move OrderBuildVisitor into V3OrderGraphBuilder.cpp (and rename to
V3OrderGraphBuilder). Move ProcessMoveBuildGraph to
V3OrderMoveGraphBuilder.cpp (and rename to V3OrderGraphBuilder).
This patch is pure code movement/rename, no refactoring at all.
Add a new data-structure V3DfgCache, which can be used to retrieve
existing vertices with some given inputs vertices. Use this in
V3DfgPeephole to eliminate the creation of redundant vertices.
Overall this is performance neutral, but is in prep for some future
work.
This functionality used to be distributed in the removeVars pass and the
final dfgToAst conversion. Instead added a new 'regularize' pass to
convert DFGs into forms that can be trivially converted back to Ast, and
a new 'eliminateVars' pass to remove/repalce redundant variables. This
simplifies dfgToAst significantly and makes the code a bit easier to
follow.
The new 'regularize' pass will ensure that every sub-expression with
multiple uses is assigned to a temporary (unless it's a trivial memory
reference or constant), and will also eliminate or replace redundant
variables. Overall it is a performance neutral change but it does
enable some later improvements which required the graph to be in this
form, and this also happens to be the form required for the dfgToAst
conversion.
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
Use the same style, and reuse the bulk of astgen to generate DfgVertex
related code. In particular allow for easier definition of custom
DfgVertex sub-types that do not directly correspond to an AstNode
sub-type. Also introduces specific names for the fixed arity vertices.
No functional change intended.