The 'act' region used to have 2 trigger vectors ('act' and 'pre'), now
it uses a single "extended" trigger vector where the top bits are what
used to be the used bits in the 'pre' trigger vector. Please see the
description above `TriggerKit`. Also move the extra triggers from the
low end to the high end in the trigger vectors.
Removed the VlTriggerVec type, and refactored to use an unpacked array
of 64-bit words instead. This means the trigger vector and its
operations are now the same as for any other unpacked array. The few
special functions required for operating on a trigger vector are now
generated in V3SchedTrigger as regular AstCFunc if needed.
No functional change intended, performance should be the same.
Add V3SchedUtil.cpp that contains common small utility functions.
Add V3SchedTrigger.cpp that contains functionality building the trigger
mechanism code.
No functional change, just code movement. Prep for some further work.
The AstIf nodes conditional on events being triggered used to be created
in V3Clock. Now it is in V3Sched*, in order to avoid having to pass
AstActive in CFunc or MTask bodies. No functional change intended, some
improved optimization due to simplifying timing triggers that were
previously missed, also fixes what seems like a bug in the original
timing commit code.
These are all genuine bugs, brief descriptions.
1. V3OrderCFuncEmitter.h used to delete a node early that was still
reference in a graph dump later. Not a big deal, it can be deleted
later at the end of V3Order.
2. V3Param.cpp: this one is tricky. The variable referenced by
AstVarXRef was deleted at the end of `visit(AstGenCase*)`, but then
`visit(AstVarXRef*)` checks `nodep->varp()` (already deleted) to see
if it's in an interface.
3. V3String::wildMatch is sometimes called with an empty 's' (the string
we are matching against tha pattern 'p'), in which case it used to go
off into the woods. Added check on call. An arbitrary number of `*`
will still match the empty string.
4. V3Task.cpp: There was an error reported for an unsupported construct,
then a subsequent SEGV. Just signal the error upward so we bail on an
error in a more graceful way.
5. verylog.y: Some unsupported constructs failed to set the parsed node,
so some memory thrash made it into some code downstream. Just parse
these into nullptr.
Also increased the timeout on one test, which sometimes tripped with
asan on GCC during heavy host load.
In non-static contexts like class objects or stack frames, the use of
global trigger evaluation is not feasible. The concept of dynamic
triggers allows for trigger evaluation in such cases. These triggers are
simply local variables, and coroutines are themselves responsible for
evaluating them. They await the global dynamic trigger scheduler object,
which is responsible for resuming them during the trigger evaluation
step in the 'act' eval region. Once the trigger is set, they await the
dynamic trigger scheduler once again, and then get resumed during the
resumption step in the 'act' eval region.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
This is a major re-design of the way code is scheduled in Verilator,
with the goal of properly supporting the Active and NBA regions of the
SystemVerilog scheduling model, as defined in IEEE 1800-2017 chapter 4.
With this change, all internally generated clocks should simulate
correctly, and there should be no more need for the `clock_enable` and
`clocker` attributes for correctness in the absence of Verilator
generated library models (`--lib-create`).
Details of the new scheduling model and algorithm are provided in
docs/internals.rst.
Implements #3278