- Remove _ENUM_END, so -Wswitch does not demand it's covered. Use the
new NUM_TYPES constexpr member instead.
- Remove 'at' prefix. This seems historical and is not particularly useful.
- Fix some cppcheck warts while at it
Added cppcheck-suppressions.txt in the repo root. You can add new
patterns in there instead of having to parse the XML output.
Also configure to add the -D__GNUC__ preprocessor macro, which makes it
understand UASSERT (it understands the 'noreturn' function attribute).
Added some case by case specific suppressions and fixed up other code,
especially in V3Ast*h and V3Dfg*.h, including code generated by astgen
that had some no-ops that irks cppcheck.
One thing it does not seem to like is `const` class members with default
initializers in the class. It will assume that's always the value, even
if overridden in the constructor. We had few so removed them.
With that a lot of files in `src/` are now clean or only have a handful
of issues. Therefore, I have also deleted cppcheck_filtered, and made it
produce human readable output straight to the terminal.
Regarding cleaning up the reported nits, I kind of got bored after
V3[A-E] so pausing here. Apologies for the merge conflicts.
Tested with cppcheck 2.13.0
Since we removed --threads 0 support, the 'threads()' option always
returns a value >= 1. Remove corresponding dead code.
Some of the coverage counters appear to use atomics even if the model is
single threaded. I'm under the impression this was a bug originally so
those ones I changed to use threads() > 1 instead.
This change introduces a custom reference-counting pointer class that
allows creating such pointers from 'this'. This lets us keep the
receiver object around even if all references to it outside of a class
method no longer exist. Useful for coroutine methods, which may outlive
all external references to the object.
The deletion of objects is deferred until the next time slot. This is to
make clearing the triggered flag on named events in classes safe
(otherwise freed memory could be accessed).
- Rename `--dump-treei` option to `--dumpi-tree`, which itself is now a
special case of `--dumpi-<tag>` where tag can be a magic word, or a
filename
- Control dumping via static `dump*()` functions, analogous to `debug()`
- Make dumping independent of the value of `debug()` (so dumping always
works even without the debug flag)
- Add separate `--dumpi-graph` for dumping V3Graphs, which is again a
special case of `--dumpi-<tag>`
- Alias `--dump-<tag>` to `--dumpi-<tag> 3` as before
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>