Added cppcheck-suppressions.txt in the repo root. You can add new
patterns in there instead of having to parse the XML output.
Also configure to add the -D__GNUC__ preprocessor macro, which makes it
understand UASSERT (it understands the 'noreturn' function attribute).
Added some case by case specific suppressions and fixed up other code,
especially in V3Ast*h and V3Dfg*.h, including code generated by astgen
that had some no-ops that irks cppcheck.
One thing it does not seem to like is `const` class members with default
initializers in the class. It will assume that's always the value, even
if overridden in the constructor. We had few so removed them.
With that a lot of files in `src/` are now clean or only have a handful
of issues. Therefore, I have also deleted cppcheck_filtered, and made it
produce human readable output straight to the terminal.
Regarding cleaning up the reported nits, I kind of got bored after
V3[A-E] so pausing here. Apologies for the merge conflicts.
Tested with cppcheck 2.13.0
This patch adds DfgLogic, which is a vertex that represents a whole,
arbitrarily complex combinational AstAlways or AstAssignW in the
DfgGraph.
Implementing this requires computing the variables live at entry to the
AstAlways (variables read by the block), so there is a new
ControlFlowGraph data structure and a classical data-flow analysis based
live variable analysis to do that at the variable level (as opposed to
bit/element level).
The actual CFG construction and live variable analysis is best effort,
and might fail for currently unhandled constructs or data types. This
can be extended later.
V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph
containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices.
The DfgLogic are then subsequently synthesized into primitive operations
by the new V3DfgSynthesize pass, which is a combination of the old
V3DfgAstToDfg conversion and new code to handle AstAlways blocks with
complex flow control.
V3DfgSynthesize by default will synthesize roughly the same constructs
as V3DfgAstToDfg used to handle before, plus any logic that is part of a
combinational cycle within the DfgGraph. This enables breaking up these
cycles, for which there are extensions to V3DfgBreakCycles in this patch
as well. V3DfgSynthesize will then delete all non synthesized or non
synthesizable DfgLogic vertices and the rest of the Dfg pipeline is
identical, with minor changes to adjust for the changed representation.
Because with this change we can now eliminate many more UNOPTFLAT, DFG
has been disabled in all the tests that specifically target testing the
scheduling and reporting of circular combinational logic.